1
|
Kumar DS, Perez G, Friel KM. Adults with Cerebral Palsy: Navigating the Complexities of Aging. Brain Sci 2023; 13:1296. [PMID: 37759897 PMCID: PMC10526900 DOI: 10.3390/brainsci13091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The goal of this narrative review is to highlight the healthcare challenges faced by adults with cerebral palsy, including the management of long-term motor deficits, difficulty finding clinicians with expertise in these long-term impairments, and scarcity of rehabilitation options. Additionally, this narrative review seeks to examine potential methods for maintaining functional independence, promoting social integration, and community participation. Although the brain lesion that causes the movement disorder is non-progressive, the neurodevelopmental disorder worsens from secondary complications of existing sensory, motor, and cognitive impairments. Therefore, maintaining the continuum of care across one's lifespan is of utmost importance. Advancements in healthcare services over the past decade have resulted in lower mortality rates and increased the average life expectancy of people with cerebral palsy. However, once they transition from adolescence to adulthood, limited federal and community resources, and health care professionals' lack of expertise present significant obstacles to achieving quality healthcare and long-term benefits. This paper highlights the common impairments seen in adults with cerebral palsy. Additionally, it underscores the critical role of long-term healthcare and management to prevent functional decline and enhance quality of life across physical, cognitive, and social domains.
Collapse
Affiliation(s)
- Devina S. Kumar
- Burke Neurological Institute, White Plains, NY 10605, USA; (D.S.K.); (G.P.)
| | - Gabriel Perez
- Burke Neurological Institute, White Plains, NY 10605, USA; (D.S.K.); (G.P.)
| | - Kathleen M. Friel
- Burke Neurological Institute, White Plains, NY 10605, USA; (D.S.K.); (G.P.)
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Kamii Y, Kojima S, Onishi H. Transcranial direct current stimulation over the posterior parietal cortex improves visuomotor performance and proprioception in the lower extremities. Front Hum Neurosci 2022; 16:876083. [PMID: 36061503 PMCID: PMC9434688 DOI: 10.3389/fnhum.2022.876083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to examine whether anodal transcranial direct current stimulation (a-tDCS) over the posterior parietal cortex (PPC) could affect visuomotor performance and proprioception in the lower extremities. We evaluated visuomotor performance in 15 healthy volunteers using a visuomotor control task by plantar dorsiflexion of the ankle joint, and calculated the absolute difference between the target and measured angle. In addition, we evaluated proprioception using a joint position matching task. During the task, the subject reproduced the ankle joint plantar dorsiflexion angle presented by the examiner. We calculated the absolute difference between the presented and measured angles (absolute error) and the variation of measured angles (variable error). Simultaneously, a-tDCS (1.5 mA, 15 min) or sham stimulation was applied to the right PPC. We observed that the absolute error of the visuomotor control task and the variable error of the joint position matching task significantly decreased after a-tDCS. However, the absolute error of the joint position matching task was not affected. This study suggests that a-tDCS over the PPC improves visuomotor performance and reduces the variable error in the joint position matching task.
Collapse
Affiliation(s)
- Yasushi Kamii
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Yasushi Kamii,
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Harvey DY, Hamilton R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:241-250. [PMID: 35078601 DOI: 10.1016/b978-0-12-823384-9.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral language treatment approaches represent the standard of care for persons with aphasia (PWA), but the benefits of these treatments are variable. Moreover, due to the logistic and financial limitations on the amount of behavioral therapy available to patients, it is often infeasible for PWA to receive behavioral interventions with the level of frequency, intensity, or duration that would provide significant and lasting benefit, underscoring the need for novel, effective treatment approaches. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have emerged as promising neurally-based tools to enhance language abilities for PWA following stroke. This chapter first provides an overview of the methods and physiologic basis motivating the use of NIBS to enhance aphasia recovery followed by a selective review of the growing evidence of its potential as a novel therapeutic tool. Subsequent sections discuss some of the principles that may prove most useful in guiding and optimizing the effects of NIBS on aphasia recovery, focusing on how the functional state of the brain at the time of stimulation interacts with the behavioral aftereffects of neuromodulation. We conclude with a discussion of current challenges and future directions for NIBS in aphasia treatment.
Collapse
Affiliation(s)
- Denise Y Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Tang L, Wu Y, Ma J, Lu Y, Wang L, Shan C. Application of tDCS in children with cerebral palsy: A mini review. Front Pediatr 2022; 10:966650. [PMID: 36204667 PMCID: PMC9530366 DOI: 10.3389/fped.2022.966650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) refers to a group of diseases characterized by persistent central dyskinesia, postural development disorder and activity limitation syndromes caused by nonprogressive brain injury in the developing fetus or infant, which is often accompanied by sensory, cognitive and attention disorders. The routine rehabilitation methods for children with CP mainly include physical therapy, occupational therapy, speech therapy and other methods. In recent years, noninvasive brain stimulation (NIBS), as a relatively new intervention method, has been widely used because of its potential to regulate cortical excitability and plasticity. Transcranial direct current stimulation (tDCS) is an NIBS technique that is easier and more convenient to perform. It does not require patients to remain stationary for a long time or have a significant impact on treatment results due to children's frequent activities. Compared with other NIBS techniques, tDCS has greater flexibility and no strict restrictions on patients' activities; it also helps the therapist conduct occupational therapy or speech therapy while a child receives tDCS, which markedly reduces the treatment time and avoids burnout due to a long treatment duration. Thus, tDCS is a better and more convenient intervention for CP children and warrants further exploration. Accordingly, this article reviews tDCS application in children with CP and discusses tDCS application prospects for such children to promote its expansion in clinical practice.
Collapse
Affiliation(s)
- Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayin Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Rehabilitation Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Wang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Giuffre A, Zewdie E, Wrightson JG, Cole L, Carlson HL, Kuo HC, Babwani A, Kirton A. Effects of Transcranial Direct Current Stimulation and High-Definition Transcranial Direct Current Stimulation Enhanced Motor Learning on Robotic Transcranial Magnetic Stimulation Motor Maps in Children. Front Hum Neurosci 2021; 15:747840. [PMID: 34690726 PMCID: PMC8526891 DOI: 10.3389/fnhum.2021.747840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Conventional transcranial direct current stimulation (tDCS) and high-definition tDCS (HD-tDCS) may improve motor learning in children. Mechanisms are not understood. Neuronavigated robotic transcranial magnetic stimulation (TMS) can produce individualised maps of primary motor cortex (M1) topography. We aimed to determine the effects of tDCS- and HD-tDCS-enhanced motor learning on motor maps. Methods: Typically developing children aged 12-18 years were randomised to right M1 anodal tDCS, HD-tDCS, or Sham during training of their left-hand on the Purdue Pegboard Task (PPT) over 5 days. Bilateral motor mapping was performed at baseline (pre), day 5 (post), and 6-weeks retention time (RT). Primary muscle was the first dorsal interosseous (FDI) with secondary muscles of abductor pollicis brevis (APB) and adductor digiti minimi (ADM). Primary mapping outcomes were volume (mm2/mV) and area (mm2). Secondary outcomes were centre of gravity (COG, mm) and hotspot magnitude (mV). Linear mixed-effects modelling was employed to investigate effects of time and stimulation type (tDCS, HD-tDCS, Sham) on motor map characteristics. Results: Twenty-four right-handed participants (median age 15.5 years, 52% female) completed the study with no serious adverse events or dropouts. Quality maps could not be obtained in two participants. No effect of time or group were observed on map area or volume. LFDI COG (mm) differed in the medial-lateral plane (x-axis) between tDCS and Sham (p = 0.038) from pre-to-post mapping sessions. Shifts in map COG were also observed for secondary left-hand muscles. Map metrics did not correlate with behavioural changes. Conclusion: Robotic TMS mapping can safely assess motor cortex neurophysiology in children undergoing motor learning and neuromodulation interventions. Large effects on map area and volume were not observed while changes in COG may occur. Larger controlled studies are required to understand the role of motor maps in interventional neuroplasticity in children.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James G Wrightson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Physical Medicine & Rehabilitation, University of California, Davis, Sacramento, CA, United States
| | - Ali Babwani
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Giuffre A, Zewdie E, Carlson HL, Wrightson JG, Kuo HC, Cole L, Kirton A. Robotic transcranial magnetic stimulation motor maps and hand function in adolescents. Physiol Rep 2021; 9:e14801. [PMID: 33817998 PMCID: PMC8020044 DOI: 10.14814/phy2.14801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) motor mapping can characterize the neurophysiology of the motor system. Limitations including human error and the challenges of pediatric populations may be overcome by emerging robotic systems. We aimed to show that neuronavigated robotic motor mapping in adolescents could efficiently produce discrete maps of individual upper extremity muscles, the characteristics of which would correlate with motor behavior. Methods Typically developing adolescents (TDA) underwent neuronavigated robotic TMS mapping of bilateral motor cortex. Representative maps of first dorsal interosseous (FDI), abductor pollicis brevis (APB), and abductor digiti minimi (ADM) muscles in each hand were created. Map features including area (primary), volume, and center of gravity were analyzed across different excitability regions (R100%, R75%, R50%, R25%). Correlations between map metrics and validated tests of hand motor function (Purdue Pegboard Test as primary) were explored. Results Twenty‐four right‐handed participants (range 12–18 years, median 15.5 years, 52% female) completed bilateral mapping and motor assessments with no serious adverse events or dropouts. Gender and age were associated with hand function and motor map characteristics. Full motor maps (R100%) for FDI did not correlate with motor function in either hand. Smaller excitability subset regions demonstrated reduced variance and dose‐dependent correlations between primary map variables and motor function in the dominant hemisphere. Conclusions Hand function in TDA correlates with smaller subset excitability regions of robotic TMS motor map outcomes. Refined motor maps may have less variance and greater potential to quantify interventional neuroplasticity. Robotic TMS mapping is safe and feasible in adolescents.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James G Wrightson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hsing-Ching Kuo
- Department of Physical Medicine & Rehabilitation, University of California, Davis, CA, USA
| | - Lauran Cole
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
The effects of robotic gait neurorehabilitation and focal vibration combined treatment in adult cerebral palsy. Neurol Sci 2019; 40:2633-2634. [DOI: 10.1007/s10072-019-03965-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
|
8
|
Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children. Neural Plast 2018; 2018:5317405. [PMID: 30662456 PMCID: PMC6312578 DOI: 10.1155/2018/5317405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2) = 9.250, p = 0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2) = 9.000, p = 0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (χ2(2) = 6.255, p = 0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.
Collapse
|
9
|
Thibaut A, Zafonte R, Morse LR, Fregni F. Understanding Negative Results in tDCS Research: The Importance of Neural Targeting and Cortical Engagement. Front Neurosci 2017; 11:707. [PMID: 29311787 PMCID: PMC5732989 DOI: 10.3389/fnins.2017.00707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Aurore Thibaut
- Department of Physical Medicine and Rehabilitation, Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Harvard University, Boston, MA, United States.,Coma Science Group, GIGA-Consciousness, University Hospital of Liege, University of Liege, Liege, Belgium
| | - Ross Zafonte
- Spaulding-Harvard SCI Model System Center, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States.,Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Leslie R Morse
- Spaulding-Harvard SCI Model System Center, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Rocky Mountain Regional Spinal Injury System, Craig Rehabilitation Hospital, Englewood, CO, United States.,Department of PMR, University of Colorado School of Medicine, University of Colorado, Aurora, CO, United States
| | - Felipe Fregni
- Department of Physical Medicine and Rehabilitation, Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Harvard University, Boston, MA, United States.,Spaulding-Harvard SCI Model System Center, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Ratan RR. Building on NeuroNEXT: Next generation clinics to cure chronic neurological disability. Ann Neurol 2017; 82:859-862. [PMID: 29171907 DOI: 10.1002/ana.25108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Rajiv R Ratan
- Burke Medical Research Institute at Weill Cornell Medicine, White Plains, NY
| |
Collapse
|