1
|
Beovich A, Boose J, Patel R, Wolf SL. Vagus Nerve Stimulation Paired With Rehabilitation for Chronic Stroke: Characterizing Responders. J Neurol Phys Ther 2024; 48:217-223. [PMID: 39028576 DOI: 10.1097/npt.0000000000000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BACKGROUND AND PURPOSE Implantable vagus nerve stimulation (VNS) paired with volitional upper extremity rehabilitation can improve impairment and function among moderately to severely impaired, chronic stroke survivors. This study is a retrospective analysis of the in-clinic rehabilitation phase of the blinded, placebo-controlled, randomized pivotal VNS-REHAB trial to determine whether dosing parameters during in-clinic paired VNS therapy were associated with responder status and whether covariates might impact that determination. METHODS Data were limited to 53 participants in the active VNS group who had received VNS implants prior to undergoing 6 weeks of in-clinic rehabilitation paired with VNS. Tasks were standardized across all participants. Dosing parameters included number of stimulations and task time. The primary outcome was the Fugl-Meyer Upper Extremity Assessment (FMA-UE), evaluated at the end of 6 weeks (Post-1). Participants were classified a priori as responders based on an improvement of ≥6 points on the FMA-UE from baseline to Post-1. RESULTS Dosing parameters were not associated with FMA-UE responder status at the end of 6 weeks. Covariates including age, gender, paretic hand, baseline severity, and chronicity of stroke were also not significant associations of response. DISCUSSION AND CONCLUSIONS While responders to VNS could be defined, therapy dosing and participant attributes did not provide greater specification for association of responder status. Limitations of this study include small sample size and non-linearity of the FMA-UE. Future studies will include reassessing responder categorization using more linear scales and examining stroke lesion characteristics to determine whether these measures are more sensitive to dosing parameters. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://www.w3.org/1999/xlink ).
Collapse
Affiliation(s)
- Alexa Beovich
- Emory Neurologic Physical Therapy Residency Program (A.B., R.P.), Doctor of Physical Therapy Program, Department of Rehabilitation Medicine (J.B.), Emory University, Atlanta, Georgia; Division of Physical Therapy, Department of Rehabilitation Medicine (S.L.W.), Emory University, School of Medicine, Atlanta, Georgia; Departments of Cell Biology and Medicine (S.L.W.), Woodruff School of Nursing, Emory University, Atlanta, Georgia; Atlanta VA Center for Visual and Neurocognitive Rehabilitation (S.L.W.), Decatur, Georgia
| | | | | | | |
Collapse
|
2
|
Gnanaprakasam A, Solomon JM, Roy AK, Deshmukh AS, Karthikbabu S. Association between depression and adherence to upper limb exercises among community-dwelling stroke survivors: A cross-sectional study. Health Sci Rep 2024; 7:e70133. [PMID: 39435034 PMCID: PMC11491541 DOI: 10.1002/hsr2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024] Open
Abstract
Background and Aims Upper limb recovery after stroke tends to be slower and incomplete. Participation in motor rehabilitation and exercise adherence are crucial to improve motor recovery. However, post-stroke depression (PSD) could impede active participation in exercises. Therefore, this study investigates the association between depression and exercise adherence among community-dwelling stroke survivors. Methods This cross-sectional study was conducted among 215 stroke survivors undergoing motor rehabilitation between February 2021 and January 2023. Patient Health Questionnaire-9 (PHQ-9) and Stroke-Specific Measure of Adherence to Home-based Exercises (SS-MAHE) were measured to assess depression symptoms and exercise adherence, respectively. Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was administered to identify the influence of impairment on these factors. Chi-square and multinomial and binary logistic regression analyses were applied to determine the relationships between these measurements. Results Using the Chi-square test, the PHQ-9 was significantly associated with SS-MAHE (p < 0.05). Logistic regression analysis revealed that patients with moderate depression had lower odds of exercise adherence (OR:0.69, 95%CI:0.56, 0.85, p < 0.01) compared to those with no depression. Type of exercises such as movement-based (OR:2.00, 95%CI:1.80, 2.24, p < 0.001) and task-based exercises (OR:1.80, 95%CI:1.53, 2.13, p < 0.001), had higher adherence odds compared to those not exercising. Severe impairment (FMA-UE) was significantly associated with lower exercise adherence (OR:0.71, 95%CI:0.54, 0.94, p < 0.05) and an increased risk of minimal depression (RR:11.09, 95%CI:1.17, 105.04, p < 0.05) compared to mild impairment. Conclusions PSD significantly impacts exercise adherence, with moderate depression notably reducing adherence rates. Incorporating mental health support into stroke rehabilitation could improve exercise adherence and potentially enhance upper limb motor recovery outcomes.
Collapse
Affiliation(s)
- Alexander Gnanaprakasam
- Department of Physiotherapy, Manipal College of Health ProfessionsManipal Academy of Higher EducationManipalIndia
| | - John M. Solomon
- Department of Physiotherapy, Manipal College of Health ProfessionsManipal Academy of Higher EducationManipalIndia
- Centre for Comprehensive Stroke Rehabilitation and ResearchManipal Academy of Higher EducationManipalIndia
| | - Ajit Kumar Roy
- Department of NeurologyManipal Hospitals, Old Airport RoadBangaloreIndia
| | - Anagha Srikant Deshmukh
- Department of Clinical Psychology, Manipal College of Health ProfessionsManipal Academy of Higher EducationManipalIndia
| | - Suruliraj Karthikbabu
- KMCH College of Physiotherapy, Dr NGP Research and Educational TrustThe Tamil Nadu Dr. M.G.R. Medical UniversityCoimbatoreIndia
| |
Collapse
|
3
|
Zaman T, Mukhtar T, Waseem Zaman M, Shahid MN, Bibi S, Fatima A. Effects of task-oriented training on dexterous movements of hands in post stroke patients. Int J Neurosci 2024; 134:175-183. [PMID: 35881414 DOI: 10.1080/00207454.2022.2095272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 10/16/2022]
Abstract
Objective: The objective of the study was to determine the effect of task-oriented training on the dexterous movements of hands in Hemiplegic post-stroke patients.Methods: This study has been registered on site ClinicalTrial.gov with clinical trial number NCT05201196. The study was Randomized controlled trial, 18 patients were recruited that meet the inclusion criteria, randomly allocated to task-oriented training Group A (n = 9) and Conventional Therapy Group B (n = 9). Both exercise trainings were applied for 45 min/session, 5 times/week for 6 weeks. Fugl-Meyer Assessment Scale Motor, sensory and coordination portion, Wolf Motor Function Scale and Barthel Index were used as outcome measures, assessed patients at Baseline, after 3 weeks and 6 weeks after training. Data were analyzed by SPSS version 23.Results: The results suggested the mean Age was 60.78 ± 9.08 and 61.33 ± 6.78 for Group A and Group B, respectively. Average BMI was 23.66 ± 2.66 for Task-oriented group and 21.36 ± 2.46 for Conventional group. Fugl-Meyer scale shows significant P-value 0.03 post treatment compare to pre-treatment which was .283, Wolf Motor Function test and Barthel Index also showed significant P-values as 0.023 and 0.007, respectively, indicating that Task-oriented training shows more significant improvements than conventional group.Conclusion: Task-based training produced statistically significant as well as clinically meaningful enhancement in the dexterous hand movements of acute and subacute stroke patients than conventional therapy and ultimately improves the functional independence in their daily activities such as feeding, bathing and hygiene.
Collapse
Affiliation(s)
- Tahreem Zaman
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Jauharabad, Pakistan
| | - Tehreem Mukhtar
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Jauharabad, Pakistan
| | | | - Mummad Nadeem Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Jauharabad, Pakistan
| | - Sajida Bibi
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Jauharabad, Pakistan
| | - Amal Fatima
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Faisalabad, Pakistan
| |
Collapse
|
4
|
Varas-Diaz G, Bhatt T, Oken B, Roth E, Hayes J, Cordo P. Concurrent ankle-assisted movement, biofeedback, and proprioceptive stimulation reduces lower limb motor impairment and improves gait in persons with stroke. Physiother Theory Pract 2024; 40:477-486. [PMID: 36102364 DOI: 10.1080/09593985.2022.2122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Persons with stroke live with residual sensorimotor impairments in their lower limbs (LL), which affects their gait. PURPOSE We investigated whether these residual impairments and resulting gait deficits can be reduced through concurrently applied assisted movement, biofeedback, and proprioceptive stimulation. METHODS A robotic device provided impairment-oriented training to the affected LL of 24 persons with stroke (PwS) with moderate-to-severe LL impairment. Participants were given 22-30 training sessions over 2-3 months. During training, the interventional device cyclically dorsiflexed and plantarflexed the ankle at 5 deg/s through ±15 deg for 30 min while the participant assisted with the imposed movement. Concurrently, participants received visual biofeedback of assistive joint torque or agonist EMG while mechanical vibration was applied to the currently lengthening (i.e. antagonist) tendon. RESULTS Sensorimotor impairment significantly decreased over the training period, which was sustained over 3 months, based on the Fugl-Meyer Assessment (FMA-LL) (p < .001), modified Ashworth scale in dorsiflexors (p < .05), and an ankle strength test (dorsiflexors and plantarflexors) (p < .05). Balance and gait also improved, based on the Tinetti Performance Oriented Mobility Assessment (POMA) (p < .05). CONCLUSION Impairment-oriented training using a robotic device capable of applying assisted movement, biofeedback, and proprioceptive stimulation significantly reduces LL impairment and improves gait in moderately-to-severely impaired PwS.
Collapse
Affiliation(s)
- Gonzalo Varas-Diaz
- School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Department of Physical Therapy, University of Illinois at Chicago, College of Applied Health Sciences, Chicago, IL, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, College of Applied Health Sciences, Chicago, IL, USA
| | - Barry Oken
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Elliot Roth
- Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA
| | - John Hayes
- College of Optometry, Pacific University, Forest Grove, OR, USA
| | - Paul Cordo
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- AMES Technology Inc, Portland, OR, USA
| |
Collapse
|
5
|
Drazich BF, Crane BM, Taylor JL, Szanton SL, Moored KD, Eldreth D, Ahmad O, Krakauer JW, Resnick B, Carlson MC. OLDER ADULTS' SUBJECTIVE WELL-BEING EXPERIENCING THE EXERGAME "I AM DOLPHIN". Int J Qual Stud Health Well-being 2023; 18:2170013. [PMID: 36730308 PMCID: PMC9897765 DOI: 10.1080/17482631.2023.2170013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to understand older adults' perceptions of the connections between an exergame intervention, "I Am Dolphin," and their subjective well-being. Researchers conducted three focus groups with 14 older adults who participated in the exergame feasibility study. The semi-structured focus groups were transcribed, coded, and analysed using deductive and inductive techniques. Three themes were constructed related to playing the exergame and participants' subjective well-being: 1) elevated mood (through scheduled activity, immersion, and socialization), 2) feelings of achievement (especially following frustration and competition), and 3) perceived cognitive or physical changes. These findings will help researchers better understand how exergames may relate to the well-being of older adults. Future investigators could use these findings to create and implement new exergame interventions.
Collapse
Affiliation(s)
- Brittany F. Drazich
- School of Nursing, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Breanna M. Crane
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Janiece L. Taylor
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah L. Szanton
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
- School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle D. Moored
- School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dana Eldreth
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Omar Ahmad
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - John W. Krakauer
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Resnick
- School of Nursing, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Michelle C. Carlson
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Crane BM, Drazich BF, Taylor JL, Moored KD, Ahmad O, Krakauer JW, Carlson MC. Older Adults and Three-Dimensional Exergaming: Motivators and Barriers to Participation and Retention. Games Health J 2023; 12:150-157. [PMID: 36706426 PMCID: PMC10325799 DOI: 10.1089/g4h.2022.0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: Cognitive and physical activity are important for daily functioning. However, limited research exists on the motivators and barriers associated with older adults participating and adhering to exergame studies that promote physical and cognitive activity. Our objective was to examine older adults' motivators and barriers to joining and completing a three-dimensional exergame study. Methods: Fourteen older adults who participated in the exergame study contributed to one of three focus group discussions. Inductive and deductive methods were used to analyze the qualitative data. Results: Motivators for joining were generativity, peer referrals, self-improvement, and curiosity. Accomplishment, immersion, and exercise were motivators for retention. Participants also cited the structured schedule and adaptive difficulty features as motivators for retention. Barriers to participation included frustration due to lack of level advancement and fatigue/pain during gameplay. Some (n = 3) reported camera tracking issues as a barrier. Unanticipated gender-based trends arose when examining perceptions of the study team's role and motivators for retention. Conclusion: These findings will inform future research strategies for participant recruitment, enrollment, and retention, in addition to providing insights into the design of motivating, enjoyable, and sustainable exergames for older adults.
Collapse
Affiliation(s)
- Breanna M. Crane
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Janiece L. Taylor
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kyle D. Moored
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Omar Ahmad
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - John W. Krakauer
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle C. Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Powell MP, Verma N, Sorensen E, Carranza E, Boos A, Fields DP, Roy S, Ensel S, Barra B, Balzer J, Goldsmith J, Friedlander RM, Wittenberg GF, Fisher LE, Krakauer JW, Gerszten PC, Pirondini E, Weber DJ, Capogrosso M. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med 2023; 29:689-699. [PMID: 36807682 DOI: 10.1038/s41591-022-02202-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/22/2022] [Indexed: 02/22/2023]
Abstract
Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.
Collapse
Affiliation(s)
- Marc P Powell
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikhil Verma
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Erynn Sorensen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Carranza
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Boos
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daryl P Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Souvik Roy
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatrice Barra
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey Balzer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George F Wittenberg
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs HS, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- The Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation - a systematic review and meta-analysis. Top Stroke Rehabil 2023; 30:53-72. [PMID: 34747351 DOI: 10.1080/10749357.2021.1990468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Stroke is a neurological disorder and one of the leading causes of disability worldwide. The patient may lose the ability to adequately move the extremities, perceive sensations, or ambulate independently. Recent experimental studies have reported the beneficial influence of virtual reality training strategies on improving overall functional abilities for stroke survivors. METHODS Conducted a systematic review of the literature using the following keywords to retrieve the data: stroke, virtual reality, motor deficits, neurorehabilitation, cognitive impairments, and sensory deficits. A random-effect meta-analysis was performed for seven scales - one cognitive (MMSE) and six motor (Fugl-Meyer, Berg Balance Scale, Time up and go, Wolf motor function, 10 m walk, Brunnstrom score). OBJECTIVE To organize and compare all the available data regarding the effectiveness of virtual reality for stroke rehabilitation. RESULTS This literature reviewed 150 studies and included 46 for qualitative and 27 for quantitative analysis. There was no statistically significant difference between groups in MMSE score (MD = 0.24, 95%CI = ((-0.42) -(0.9)), p = .47, I2 = 0%) and Fugl-Meyer score (MD = (-0.38), 95%CI = ((-12.88)-(12.11)), p = .95, I2 = 98%) . The statistical significance was not reached in any of the other outcomes. CONCLUSIONS This review supports that stroke rehabilitation programs incorporating virtual reality are associated with improved functional outcomes, but there is no statistically significant difference compared to standard therapy.
Collapse
Affiliation(s)
- Azka Khan
- Faculty of Rehabilitation and Allied Health Sciences Islamabad, Riphah International University, Rawalpindi, Pakistan
| | - Anna Podlasek
- Neuroscience and Vascular Simulation, School of Medicine, Anglia Ruskin University, Chelmsford, Essex, UK.,Nihr Nottingham Brc, University of Nottingham, Nottingham, UK.,Clinical Radiology,Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Fahad Somaa
- King Abdulaziz University,Occupational Therapy Department, Faculty of Medical Rehabilitation Sciences, King AbdulAziz University Jeddah, Saudi, Arabia
| |
Collapse
|
9
|
Grosmaire AG, Pila O, Breuckmann P, Duret C. Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. NeuroRehabilitation 2022; 51:577-593. [PMID: 36530096 DOI: 10.3233/nre-220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rehabilitation of stroke-related upper limb paresis is a major public health issue. OBJECTIVE Robotic systems have been developed to facilitate neurorehabilitation by providing key elements required to stimulate brain plasticity and motor recovery, namely repetitive, intensive, adaptative training with feedback. Although the positive effect of robot-assisted therapy on motor impairments has been well demonstrated, the effect on functional capacity is less certain. METHOD This narrative review outlines the principles of robot-assisted therapy for the rehabilitation of post-stroke upper limb paresis. RESULTS A paradigm is proposed to promote not only recovery of impairment but also function. CONCLUSION Further studies that would integrate some principles of the paradigm described in this paper are needed.
Collapse
Affiliation(s)
- Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Petra Breuckmann
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| |
Collapse
|
10
|
Elango S, Francis AJA, Chakravarthy VS. Interaction of network and rehabilitation therapy parameters in defining recovery after stroke in a Bilateral Neural Network. J Neuroeng Rehabil 2022; 19:142. [PMID: 36536385 PMCID: PMC9762011 DOI: 10.1186/s12984-022-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Restoring movement after hemiparesis caused by stroke is an ongoing challenge in the field of rehabilitation. With several therapies in use, there is no definitive prescription that optimally maps parameters of rehabilitation with patient condition. Recovery gets further complicated once patients enter chronic phase. In this paper, we propose a rehabilitation framework based on computational modeling, capable of mapping patient characteristics to parameters of rehabilitation therapy. METHOD To build such a system, we used a simple convolutional neural network capable of performing bilateral reaching movements in 3D space using stereovision. The network was designed to have bilateral symmetry to reflect the bilaterality of the cerebral hemispheres with the two halves joined by cross-connections. This network was then modified according to 3 chosen patient characteristics-lesion size, stage of recovery (acute or chronic) and structural integrity of cross-connections (analogous to Corpus Callosum). Similarly, 3 parameters were used to define rehabilitation paradigms-movement complexity (Exploratory vs Stereotypic), hand selection mode (move only affected arm, CIMT vs move both arms, BMT), and extent of plasticity (local vs global). For each stroke condition, performance under each setting of the rehabilitation parameters was measured and results were analyzed to find the corresponding optimal rehabilitation protocol. RESULTS Upon analysis, we found that regardless of patient characteristics network showed better recovery when high complexity movements were used and no significant difference was found between the two hand selection modes. Contrary to these two parameters, optimal extent of plasticity was influenced by patient characteristics. For acute stroke, global plasticity is preferred only for larger lesions. However, for chronic, plasticity varies with structural integrity of cross-connections. Under high integrity, chronic prefers global plasticity regardless of lesion size, but with low integrity local plasticity is preferred. CONCLUSION Clinically translating the results obtained, optimal recovery may be observed when paretic arm explores the available workspace irrespective of the hand selection mode adopted. However, the extent of plasticity to be used depends on characteristics of the patient mainly stage of stroke and structural integrity. By using systems as developed in this study and modifying rehabilitation paradigms accordingly it is expected post-stroke recovery can be maximized.
Collapse
Affiliation(s)
- Sundari Elango
- grid.417969.40000 0001 2315 1926Computational Neuroscience Laboratory, Department of Biotechnology, Indian Institute of Technology, Madras, India
| | - Amal Jude Ashwin Francis
- grid.417969.40000 0001 2315 1926Computational Neuroscience Laboratory, Department of Biotechnology, Indian Institute of Technology, Madras, India
| | - V. Srinivasa Chakravarthy
- grid.417969.40000 0001 2315 1926Computational Neuroscience Laboratory, Department of Biotechnology, Indian Institute of Technology, Madras, India
| |
Collapse
|
11
|
Stockley RC, Christian DL. A focus group study of therapists' views on using a novel neuroanimation virtual reality game to deliver intensive upper-limb rehabilitation early after stroke. Arch Physiother 2022; 12:15. [PMID: 35701828 PMCID: PMC9199178 DOI: 10.1186/s40945-022-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intensive training can significantly reduce upper-limb impairments after stroke but delivering interventions of sufficiently high intensity is extremely difficult in routine practice. The MindPod Dolphin® system is a novel neuroanimation experience which provides motivating and intensive virtual reality based training for the upper-limb. However several studies report that health professionals have reservations about using technology in rehabilitation. Therefore, this study sought to explore the views of therapists who had used this novel neuroanimation therapy (NAT) in a clinical centre to deliver intensive for the upper-limb of people after stroke in a phase 2 trial (SMARTS2). METHODS Four therapists (three female, two physical and two occupational therapists) who delivered NAT participated in a focus group conducted by two independent researchers. The theoretical domains framework and COM-B behaviour change models informed the discussion schedule for the focus group. An inductive approach to content analysis was used. Recordings were transcribed, coded and thematically analysed. Generated key themes were cross-checked with participants. RESULTS Whilst therapists had some initial concerns about using NAT, these were reduced by training, reference materials and face-to-face technical support. Therapists noted several significant benefits to using NAT including multi-system involvement, carry-over to functional tasks and high levels of patient engagement. CONCLUSIONS These findings illuminate key areas that clinicians, technology developers and researchers should consider when designing, developing and implementing NAT. Specifically, they highlight the importance of planning the implementation of rehabilitation technologies, ensuring technologies are robust and suggest a range of benefits that might be conferred to patients when using intensive NAT as part of rehabilitation for the upper-limb after stroke.
Collapse
Affiliation(s)
- Rachel C Stockley
- Stroke Research Team, Faculty of Health and Wellbeing, University of Central Lancashire, PrestonPreston, PR1 2HE, UK.
| | - Danielle L Christian
- Stroke Research Team, Faculty of Health and Wellbeing, University of Central Lancashire, PrestonPreston, PR1 2HE, UK
| |
Collapse
|
12
|
Widmer M, Held JPO, Wittmann F, Valladares B, Lambercy O, Sturzenegger C, Palla A, Lutz K, Luft AR. Reward During Arm Training Improves Impairment and Activity After Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair 2022; 36:140-150. [PMID: 34937456 PMCID: PMC8796156 DOI: 10.1177/15459683211062898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Learning and learning-related neuroplasticity in motor cortex are potential mechanisms mediating recovery of movement abilities after stroke. These mechanisms depend on dopaminergic projections from midbrain that may encode reward information. Likewise, therapist experience confirms the role of feedback/reward for training efficacy after stroke. OBJECTIVE To test the hypothesis that rehabilitative training can be enhanced by adding performance feedback and monetary rewards. METHODS This multicentric, assessor-blinded, randomized controlled trial used the ArmeoSenso virtual reality rehabilitation system to train 37 first-ever subacute stroke patients in arm-reaching to moving targets. The rewarded group (n = 19) trained with performance feedback (gameplay) and contingent monetary reward. The control group (n = 18) used the same system without monetary reward and with graphically minimized performance feedback. Primary outcome was the change in the two-dimensional reaching space until the end of the intervention period. Secondary clinical assessments were performed at baseline, after 3 weeks of training (15 1-hour sessions), and at 3 month follow-up. Duration and intensity of the interventions as well as concomitant therapy were comparable between groups. RESULTS The two-dimensional reaching space showed an overall improvement but no difference between groups. The rewarded group, however, showed significantly greater improvements from baseline in secondary outcomes assessing arm activity (Box and Block Test at post-training: 6.03±2.95, P = .046 and 3 months: 9.66±3.11, P = .003; Wolf Motor Function Test [Score] at 3 months: .63±.22, P = .007) and arm impairment (Fugl-Meyer Upper Extremity at 3 months: 8.22±3.11, P = .011). CONCLUSIONS Although neutral in its primary outcome, the trial signals a potential facilitating effect of reward on training-mediated improvement of arm paresis. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT02257125).
Collapse
Affiliation(s)
- Mario Widmer
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
- cereneo Advanced Rehabilitation Institute (CARINg), Vitznau, Switzerland
- Department of Therapy, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Jeremia P. O. Held
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Frieder Wittmann
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Belen Valladares
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian Sturzenegger
- Klinik Lengg, Zürcher RehaZentren, Zurich, Switzerland
- Bellikon Rehabilitation Clinic, Bellikon, Switzerland
| | - Antonella Palla
- Klinik Wald, Zürcher RehaZentren, Wald, Switzerland
- Swiss Concussion Center, Schulthess Clinic, Zurich, Switzerland
| | - Kai Lutz
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
- squipe GmbH, Wädenswil, Switzerland
| | - Andreas R. Luft
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| |
Collapse
|
13
|
Escalante-Gonzalbo AM, Ramírez-Graullera YS, Pasantes H, Aguilar-Chalé JJ, Sánchez-Castillo GI, Escutia-Macedo XA, Briseño-Soriano TM, Franco-Castro P, Estrada-Rosales AL, Vázquez-Abundes SE, Andrade-Morales D, Hernández-Franco J, Palafox L. Safety, Feasibility, and Acceptability of a New Virtual Rehabilitation Platform: A Supervised Pilot Study. Rehabil Process Outcome 2022; 10:11795727211033279. [PMID: 34987304 PMCID: PMC8492031 DOI: 10.1177/11795727211033279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Stroke is the leading cause of disability in adults worldwide, with
hemiparesis being the most prevalent consequence. The use of video games and
movement sensors could contribute to improving patients’ chances of
recovery. We performed a supervised pilot study to validate the safety,
feasibility, and acceptability of a new virtual rehabilitation platform in
patients with chronic post-stroke upper limb hemiparesis. Methods: The participants (n = 9) participated in 40 rehabilitation sessions, twice a
week, for a period of 20 weeks. Their experiences with the platform were
documented using a Likert-scale survey. Changes in motor function were
evaluated using the Chedoke Arm and Hand Activity Inventory (CAHAI) and the
Wolf Motor Function Test (WMFT). Results and conclusions: All participants expressed that they enjoyed the experience and felt
comfortable using the platform. Preliminary results showed significant motor
recovery (P = .0039) according to the WMFT scores. Patients
with significant impairment showed no improvement in upper limb
task-oriented motor function after therapy. The new platform is safe and well-accepted by patients. The improvement in
motor function observed in some of the participants should be attributed to
the therapy since spontaneous functional recovery is not expected in chronic
stroke patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lorena Palafox
- Instituto Nacional de Neurología y Neurocirugía (INNN), CDMX, México
| |
Collapse
|
14
|
Neuromuscular electrical stimulation restores upper limb sensory-motor functions and body representations in chronic stroke survivors. MED 2022; 3:58-74.e10. [DOI: 10.1016/j.medj.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
|
15
|
Ballester BR, Antenucci F, Maier M, Coolen ACC, Verschure PFMJ. Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training. J Neuroeng Rehabil 2021; 18:186. [PMID: 34972526 PMCID: PMC8720223 DOI: 10.1186/s12984-021-00971-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. METHODS We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. RESULTS Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of [Formula: see text]: 0.38 with an error ([Formula: see text]: 12.8). Next, we evaluate its reliability ([Formula: see text] for test-retest), longitudinal external validity ([Formula: see text] true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements ([Formula: see text]: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory ([Formula: see text]: 0.40) and Barthel Index ([Formula: see text]: 0.35). CONCLUSIONS Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.
Collapse
Affiliation(s)
- Belén Rubio Ballester
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | | | - Martina Maier
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | | | - Paul F M J Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institució Catalana de Recerca, Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
16
|
Buchs G, Haimler B, Kerem M, Maidenbaum S, Braun L, Amedi A. A self-training program for sensory substitution devices. PLoS One 2021; 16:e0250281. [PMID: 33905446 PMCID: PMC8078811 DOI: 10.1371/journal.pone.0250281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through audition or touch, targeting blind and visually impaired individuals. One bottleneck towards adopting SSDs in everyday life by blind users, is the constant dependency on sighted instructors throughout the learning process. Here, we present a proof-of-concept for the efficacy of an online self-training program developed for learning the basics of the EyeMusic visual-to-auditory SSD tested on sighted blindfolded participants. Additionally, aiming to identify the best training strategy to be later re-adapted for the blind, we compared multisensory vs. unisensory as well as perceptual vs. descriptive feedback approaches. To these aims, sighted participants performed identical SSD-stimuli identification tests before and after ~75 minutes of self-training on the EyeMusic algorithm. Participants were divided into five groups, differing by the feedback delivered during training: auditory-descriptive, audio-visual textual description, audio-visual perceptual simultaneous and interleaved, and a control group which had no training. At baseline, before any EyeMusic training, participants SSD objects’ identification was significantly above chance, highlighting the algorithm’s intuitiveness. Furthermore, self-training led to a significant improvement in accuracy between pre- and post-training tests in each of the four feedback groups versus control, though no significant difference emerged among those groups. Nonetheless, significant correlations between individual post-training success rates and various learning measures acquired during training, suggest a trend for an advantage of multisensory vs. unisensory feedback strategies, while no trend emerged for perceptual vs. descriptive strategies. The success at baseline strengthens the conclusion that cross-modal correspondences facilitate learning, given SSD algorithms are based on such correspondences. Additionally, and crucially, the results highlight the feasibility of self-training for the first stages of SSD learning, and suggest that for these initial stages, unisensory training, easily implemented also for blind and visually impaired individuals, may suffice. Together, these findings will potentially boost the use of SSDs for rehabilitation.
Collapse
Affiliation(s)
- Galit Buchs
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (GB)
| | - Benedetta Haimler
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Center of Advanced Technologies in Rehabilitation (CATR), The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menachem Kerem
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
| | - Shachar Maidenbaum
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Biomedical Engineering, Ben Gurion University, Beersheba, Israel
| | - Liraz Braun
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- * E-mail: (AA); (GB)
| |
Collapse
|
17
|
Krakauer JW, Kitago T, Goldsmith J, Ahmad O, Roy P, Stein J, Bishop L, Casey K, Valladares B, Harran MD, Cortés JC, Forrence A, Xu J, DeLuzio S, Held JP, Schwarz A, Steiner L, Widmer M, Jordan K, Ludwig D, Moore M, Barbera M, Vora I, Stockley R, Celnik P, Zeiler S, Branscheidt M, Kwakkel G, Luft AR. Comparing a Novel Neuroanimation Experience to Conventional Therapy for High-Dose Intensive Upper-Limb Training in Subacute Stroke: The SMARTS2 Randomized Trial. Neurorehabil Neural Repair 2021; 35:393-405. [PMID: 33745372 DOI: 10.1177/15459683211000730] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Evidence from animal studies suggests that greater reductions in poststroke motor impairment can be attained with significantly higher doses and intensities of therapy focused on movement quality. These studies also indicate a dose-timing interaction, with more pronounced effects if high-intensity therapy is delivered in the acute/subacute, rather than chronic, poststroke period. OBJECTIVE To compare 2 approaches of delivering high-intensity, high-dose upper-limb therapy in patients with subacute stroke: a novel exploratory neuroanimation therapy (NAT) and modified conventional occupational therapy (COT). METHODS A total of 24 patients were randomized to NAT or COT and underwent 30 sessions of 60 minutes time-on-task in addition to standard care. The primary outcome was the Fugl-Meyer Upper Extremity motor score (FM-UE). Secondary outcomes included Action Research Arm Test (ARAT), grip strength, Stroke Impact Scale hand domain, and upper-limb kinematics. Outcomes were assessed at baseline, and days 3, 90, and 180 posttraining. Both groups were compared to a matched historical cohort (HC), which received only 30 minutes of upper-limb therapy per day. RESULTS There were no significant between-group differences in FM-UE change or any of the secondary outcomes at any timepoint. Both high-dose groups showed greater recovery on the ARAT (7.3 ± 2.9 points; P = .011) but not the FM-UE (1.4 ± 2.6 points; P = .564) when compared with the HC. CONCLUSIONS Neuroanimation may offer a new, enjoyable, efficient, and scalable way to deliver high-dose and intensive upper-limb therapy.
Collapse
Affiliation(s)
| | - Tomoko Kitago
- Burke Neurological Institute, White Plains, NY, USA.,Weill Cornell Medicine, New York, NY, USA.,Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Omar Ahmad
- Johns Hopkins University, Baltimore, MD, USA
| | - Promit Roy
- Johns Hopkins University, Baltimore, MD, USA
| | - Joel Stein
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lauri Bishop
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kelly Casey
- Johns Hopkins University, Baltimore, MD, USA
| | - Belen Valladares
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland.,University Hospital and University of Zurich, Switzerland
| | | | - Juan Camilo Cortés
- Johns Hopkins University, Baltimore, MD, USA.,Columbia University, New York, NY, USA
| | | | - Jing Xu
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Jeremia P Held
- University Hospital and University of Zurich, Switzerland
| | - Anne Schwarz
- University Hospital and University of Zurich, Switzerland
| | - Levke Steiner
- University Hospital and University of Zurich, Switzerland
| | - Mario Widmer
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | | | | | | | - Isha Vora
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Gert Kwakkel
- Vrije Universiteit Amsterdam, Netherlands.,Amsterdam Rehabilitation Research Centre, Reade, Netherlands
| | - Andreas R Luft
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland.,University Hospital and University of Zurich, Switzerland
| |
Collapse
|
18
|
Subramanian SK, Cross MK, Hirschhauser CS. Virtual reality interventions to enhance upper limb motor improvement after a stroke: commonly used types of platform and outcomes. Disabil Rehabil Assist Technol 2020; 17:107-115. [PMID: 32448005 DOI: 10.1080/17483107.2020.1765422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Virtual Reality (VR) based platforms are useful in enhancing post-stroke sub-optimal upper limb (UL) motor improvement. A variety of options are available from expensive highly customizable platforms to low cost turnkey solutions. Clinical outcomes primarily help assess the effects of VR-based platforms. These outcomes mainly quantify how much improvement has occurred. Very few outcomes characterize the type (i.e. how) of recovery. We categorized the types of VR-based platforms and outcome measures commonly used for post-stroke UL motor improvement.Methods: We reviewed the published literature in English from 2000-2019. Different types of VR-based platforms were grouped into those available commercially and those developed by the various research groups. We initially classified outcomes from the retrieved studies under the appropriate International Classification of Functioning categories. Then, we divided the outcomes as those quantifying the type or extent of improvement.Results: We found a total of 125 studies. Majority of the studies used commercially available platforms. A total of 42 different outcome measures were used. Seventeen different outcomes were used to assess body structure and functions as well as in activity limitations. Eight outcomes assessed the effects of contextual factors and participation restrictions. The Fugl Meyer Assessment, Wolf Motor Function Test and Stroke Impact Scale were most often used across the three categories. Of the 125 studies, 52 used outcomes characterizing the type of recovery. Although a smaller proportion, 24 studies included movement patterns outcomes.Conclusion: A standardized set of outcomes can promote better comparisons between studies using different VR-based platforms for post-stroke UL motor improvement.Implications for RehabilitationA wide variety of commercially available systems are present from expensive customizable systems to low-cost turnkey systems.The Fugl-Meyer Assessment and Wolf Motor Function Test along with the Stroke Impact Scale-Social Participation subscale were used most often across all studies as assessments of body structure and function, activity limitations and participation restriction.It is essential to include movement pattern outcomes addressing whether recovery of compensation occurs with the use of VR-based platforms.
Collapse
Affiliation(s)
- Sandeep K Subramanian
- Department of Physical Therapy, School of Health Professions, UT Health San Antonio, San Antonio, TX, USA.,Rehabilitation Services, University Hospital, University Health System, San Antonio, TX, USA
| | - MacKenzie K Cross
- Department of Physical Therapy, School of Health Professions, UT Health San Antonio, San Antonio, TX, USA
| | - Cole S Hirschhauser
- Department of Physical Therapy, School of Health Professions, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Advances and challenges in stroke rehabilitation. Lancet Neurol 2020; 19:348-360. [PMID: 32004440 DOI: 10.1016/s1474-4422(19)30415-6] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing. Substantial advances are yet to be made in stroke rehabilitation practice to meet this demand and improve patient outcomes relative to current care. Several large intervention trials targeting motor recovery report that participants' motor performance improved, but to a similar extent for both the intervention and control groups in most trials. These neutral results might reflect an absence of additional benefit from the tested interventions or the many challenges of designing and doing large stroke rehabilitation trials. Strategies for improving trial quality include new approaches to the selection of patients, control interventions, and endpoint measures. Although stroke rehabilitation research strives for better trials, interventions, and outcomes, rehabilitation practices continue to help patients regain independence after stroke.
Collapse
|
20
|
Subramanian SK, Baniña MC, Sambasivan K, Haentjens K, Finestone HM, Sveistrup H, Levin MF. Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke. Neurorehabil Neural Repair 2020; 34:210-221. [PMID: 31976815 DOI: 10.1177/1545968319899912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Kinematic abundance permits using different movement patterns for task completion. Individuals poststroke may take advantage of abundance by using compensatory trunk displacement to overcome upper limb (UL) movement deficits. However, movement adaptation in tasks requiring specific intersegment coordination may remain limited. Objective. We tested movement adaptation in both arms of individuals with chronic stroke (n = 16) and nondominant arms of controls (n = 12) using 2 no-vision reaching tasks involving trunk movement (40 trials/arm). Methods. In the "stationary hand task" (SHT), subjects maintained the hand motionless over a target while leaning the trunk forward. In the "reaching hand task" (RHT), subjects reached to the target while leaning forward. For both tasks, trunk movement was unexpectedly blocked in 40% of trials to assess the influence of trunk movement on adaptive arm positioning or reaching. UL sensorimotor impairment, activity, and sitting balance were assessed in the stroke group. The primary outcome measure for SHT was gain (g), defined as the extent to which trunk displacement contributing to hand motion was offset by appropriate changes in UL movements (g = 1: complete compensation) and endpoint deviation for RHT. Results. Individuals poststroke had lower gains and greater endpoint deviation using the more-affected compared with less-affected UL and controls. Those with less sensorimotor impairment, greater activity levels, and better sitting balance had higher gains and smaller endpoint deviations. Lower gains were associated with diminished UL adaptability. Conclusions. Tests of condition-specific adaptability of interjoint coordination may be used to measure UL adaptability and changes in adaptability with treatment.
Collapse
Affiliation(s)
- Sandeep K Subramanian
- Université de Montréal, Montreal, Quebec, Canada.,Jewish Rehabilitation Hospital site of the Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Melanie C Baniña
- Jewish Rehabilitation Hospital site of the Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,McGill University, Montreal, Quebec, Canada
| | - Krithika Sambasivan
- Jewish Rehabilitation Hospital site of the Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,McGill University, Montreal, Quebec, Canada
| | - Katherine Haentjens
- Jewish Rehabilitation Hospital site of the Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,McGill University, Montreal, Quebec, Canada
| | - Hillel M Finestone
- University of Ottawa, Ottawa, Ontario, Canada.,Élisabeth Bruyère Hospital, Bruyère Continuing Care, Ottawa, Ontario, Canada
| | - Heidi Sveistrup
- University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Mindy F Levin
- Jewish Rehabilitation Hospital site of the Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Solomonow-Avnon D, Mawase F. The dose and intensity matter for chronic stroke. J Neurol Neurosurg Psychiatry 2019; 90:1187-1188. [PMID: 31171584 DOI: 10.1136/jnnp-2019-320752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/03/2022]
Affiliation(s)
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Ballester BR, Maier M, Duff A, Cameirão M, Bermúdez S, Duarte E, Cuxart A, Rodríguez S, San Segundo Mozo RM, Verschure PFMJ. A critical time window for recovery extends beyond one-year post-stroke. J Neurophysiol 2019; 122:350-357. [PMID: 31141442 PMCID: PMC6689791 DOI: 10.1152/jn.00762.2018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The impact of rehabilitation on post-stroke motor recovery and its dependency on the patient’s chronicity remain unclear. The field has widely accepted the notion of a proportional recovery rule with a “critical window for recovery” within the first 3–6 mo poststroke. This hypothesis justifies the general cessation of physical therapy at chronic stages. However, the limits of this critical window have, so far, been poorly defined. In this analysis, we address this question, and we further explore the temporal structure of motor recovery using individual patient data from a homogeneous sample of 219 individuals with mild to moderate upper-limb hemiparesis. We observed that improvement in body function and structure was possible even at late chronic stages. A bootstrapping analysis revealed a gradient of enhanced sensitivity to treatment that extended beyond 12 mo poststroke. Clinical guidelines for rehabilitation should be revised in the context of this temporal structure. NEW & NOTEWORTHY Previous studies in humans suggest that there is a 3- to 6-mo “critical window” of heightened neuroplasticity poststroke. We analyze the temporal structure of recovery in patients with hemiparesis and uncover a precise gradient of enhanced sensitivity to treatment that expands far beyond the limits of the so-called critical window. These findings highlight the need for providing therapy to patients at the chronic and late chronic stages.
Collapse
Affiliation(s)
- Belén Rubio Ballester
- Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia (IBEC) , Barcelona , Spain
| | - Martina Maier
- Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia (IBEC) , Barcelona , Spain
| | - Armin Duff
- Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia (IBEC) , Barcelona , Spain
| | - Mónica Cameirão
- Madeira Interactive Technologies Institute and Universidade da Madeira, Campus Universitário da Penteada, Funchal , Portugal
| | - Sergi Bermúdez
- Madeira Interactive Technologies Institute and Universidade da Madeira, Campus Universitário da Penteada, Funchal , Portugal
| | - Esther Duarte
- Servei de Medicina Física i Rehabilitació, Hospitals del Mar i l'Esperança, Institut Hospital del Mar d'Investigacions Mèdiques , Barcelona , Spain
| | - Ampar Cuxart
- Servei de Medicina Física i Rehabilitació, Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - Susana Rodríguez
- Servei de Medicina Física i Rehabilitació, Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | | | - Paul F M J Verschure
- Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia (IBEC) , Barcelona , Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, Barcelona , Spain
| |
Collapse
|
23
|
Hernandez-Pavon JC, Harvey RL. Noninvasive Transcranial Magnetic Brain Stimulation in Stroke. Phys Med Rehabil Clin N Am 2019; 30:319-335. [PMID: 30954150 DOI: 10.1016/j.pmr.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is likely that transcranial magnetic brain stimulation will be used for the clinical treatment of stroke and stroke-related impairments in the future. The anatomic target and stimulation parameters will likely vary for any clinical focus, be it weakness, pain, or cognitive or communicative dysfunction. Biomarkers may also be useful for identifying patients who will respond best, with a goal to enhance clinical decision making. Combination with drugs or specific types of therapeutic exercise may be necessary to achieve maximal response.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, 355 East Erie Street, Chicago, IL 60611, USA
| | - Richard L Harvey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Brain Innovation Center, Shirley Ryan AbilityLab, 355 East Erie Street, Chicago, IL 60611, USA.
| |
Collapse
|