1
|
Contemori G, Maniglia M, Guénot J, Soler V, Cherubini M, Cottereau BR, Trotter Y. tRNS boosts visual perceptual learning in participants with bilateral macular degeneration. Front Aging Neurosci 2024; 16:1326435. [PMID: 38450381 PMCID: PMC10914974 DOI: 10.3389/fnagi.2024.1326435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Perceptual learning (PL) has shown promise in enhancing residual visual functions in patients with age-related macular degeneration (MD), however it requires prolonged training and evidence of generalization to untrained visual functions is limited. Recent studies suggest that combining transcranial random noise stimulation (tRNS) with perceptual learning produces faster and larger visual improvements in participants with normal vision. Thus, this approach might hold the key to improve PL effects in MD. To test this, we trained two groups of MD participants on a contrast detection task with (n = 5) or without (n = 7) concomitant occipital tRNS. The training consisted of a lateral masking paradigm in which the participant had to detect a central low contrast Gabor target. Transfer tasks, including contrast sensitivity, near and far visual acuity, and visual crowding, were measured at pre-, mid and post-tests. Combining tRNS and perceptual learning led to greater improvements in the trained task, evidenced by a larger increment in contrast sensitivity and reduced inhibition at the shortest target to flankers' distance. The overall amount of transfer was similar between the two groups. These results suggest that coupling tRNS and perceptual learning has promising potential applications as a clinical rehabilitation strategy to improve vision in MD patients.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padua, Italy
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Jade Guénot
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Vincent Soler
- Service d’Ophtalmologie Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marta Cherubini
- Centre National de la Recherche Scientifique, Toulouse, France
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Benoit R. Cottereau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Yves Trotter
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
2
|
Kadhum A, Tan ETC, Fronius M, Baart SJ, Levi DM, Joosse MV, Simonsz HJ, Loudon SE. Supervised dichoptic gaming versus monitored occlusion therapy for childhood amblyopia: Effectiveness and efficiency. Acta Ophthalmol 2024; 102:38-48. [PMID: 37078540 DOI: 10.1111/aos.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To compare the effectiveness and efficiency of supervised dichoptic action-videogame play to occlusion therapy in children with amblyopia. METHODS Newly diagnosed children with amblyopia aged 4-12 years were recruited, excluding strabismus >30PD. After 16 weeks of refractive adaptation children were randomized to gaming 1 h/week supervised by the researcher, or electronically monitored occlusion 2 h/day. The gaming group played a dichoptic action-videogame using virtual reality goggles, which included the task of catching a snowflake presented intermittently to the amblyopic eye. Contrast for the fellow eye was self-adjusted until 2 identical images were perceived. The primary outcome was visual acuity (VA) change from baseline to 24 weeks. RESULTS We recruited 96 children, 29 declined and 2 were excluded for language or legal issues. After refractive adaptation, 24 of the remaining 65 no longer met the inclusion criteria for amblyopia, and 8 dropped out. Of 16 children treated with gaming, 7 (6.7 years) completed treatment, whereas 9 younger children (5.3 years) did not. Of 17 treated with occlusion, 14 (5.1 years) completed treatment and 3 (4.5 years) did not. Of 5 children with small-angle strabismus, 3 treated with occlusion completed treatment and 2 treated with gaming did not. Median VA improved by 0.30 logMAR (IQR 0.20-0.40) after gaming, 0.20 logMAR (0.00-0.30) after occlusion (p = 0.823). Treatment efficiency was 1.25 logMAR/100 h (range 0.42-2.08) with gaming, 0.08 (-0.19-0.68) with occlusion (p < 0.001). CONCLUSION Dichoptic gaming seems a viable alternative for older children with refractive amblyopia after glasses adaptation. Treatment efficiency with gaming under continuous supervision was 15 times higher than with occlusion at home.
Collapse
Affiliation(s)
- Aveen Kadhum
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emily T C Tan
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria Fronius
- Department of Ophthalmology, Child Vision Research Unit, Goethe University, Frankfurt am Main, Germany
| | - S J Baart
- Department of Clinical Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dennis M Levi
- Berkeley, Herbert Wertheim School of Optometry and Vision Science, and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Maurits V Joosse
- Department of Ophthalmology, Haaglanden Medical Center (HMC), Westeinde Hospital, The Hague, The Netherlands
| | - Huibert J Simonsz
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sjoukje E Loudon
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
The Study of Short-Term Plastic Visual Perceptual Training Based on Virtual and Augmented Reality Technology in Amblyopia. J Ophthalmol 2022; 2022:2826724. [PMID: 36091575 PMCID: PMC9458388 DOI: 10.1155/2022/2826724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Backgrounds. The treatment for amblyopia can have a substantial impact on quality of life. Conventional treatments for amblyopia have some limitations, then we try to explore a new and effective method to treat amblyopia. This study aimed to determine the potential effect of short-term plastic visual perceptual training based on VR and AR platforms in amblyopic patients. Methods. All observers were blinded to patient groupings. A total of 145 amblyopic children were randomly assigned into 2 groups: VR group (71 patients) and AR group (74 patients). In the VR group, each subject underwent a 20-min short-term plastic visual perceptual training based on a VR platform, and in the AR group, based on an AR platform. The best-corrected visual acuity (BCVA), fine stereopsis, and contrast sensitivity function (CSF) were measured before and after training. Results. The BCVA (P < 0.001) and fine stereopsis (P < 0.05) were improved significantly both in VR and AR group after training. Moreover, in the AR group, the CSF showed the value of all spatial frequencies had a statistically significant improvement after training (P < 0.05), while in the VR group, only the value of spatial frequency 12 improved significantly (P = 0.008). Conclusions. This study showed that the short-term plastic visual perceptual training based on VR and AR technology can improve BCVA, fine stereopsis and CSF of refractive amblyopia. It was suggested that the visual perceptual training based on the VR and AR platforms may be potentially applied in treatment for amblyopia and provided a high-immersing alternative.
Collapse
|
4
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Xiao W. High-definition transcranial direct current stimulation of the left middle temporal complex does not affect visual motion perception learning. Front Neurosci 2022; 16:988590. [PMID: 36117616 PMCID: PMC9474993 DOI: 10.3389/fnins.2022.988590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Visual perceptual learning (VPL) refers to the improvement in visual perceptual abilities through training and has potential implications for clinical populations. However, improvements in perceptual learning often require hundreds or thousands of trials over weeks to months to attain, limiting its practical application. Transcranial direct current stimulation (tDCS) could potentially facilitate perceptual learning, but the results are inconsistent thus far. Thus, this research investigated the effect of tDCS over the left human middle temporal complex (hMT+) on learning to discriminate visual motion direction. Twenty-seven participants were randomly assigned to the anodal, cathodal and sham tDCS groups. Before and after training, the thresholds of motion direction discrimination were assessed in one trained condition and three untrained conditions. Participants were trained over 5 consecutive days while receiving 4 × 1 ring high-definition tDCS (HD-tDCS) over the left hMT+. The results showed that the threshold of motion direction discrimination significantly decreased after training. However, no obvious differences in the indicators of perceptual learning, such as the magnitude of improvement, transfer indexes, and learning curves, were noted among the three groups. The current study did not provide evidence of a beneficial effect of tDCS on VPL. Further research should explore the impact of the learning task characteristics, number of training sessions and the sequence of stimulation.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi’an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Wei Xiao,
| |
Collapse
|
5
|
Comparison of Amblyopia Treatment Effect with Dichoptic Method Using Polarizing Film and Occlusion Therapy Using an Eye Patch. CHILDREN 2022; 9:children9091285. [PMID: 36138594 PMCID: PMC9497621 DOI: 10.3390/children9091285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
We developed a novel, low-cost, easily administered method that uses a polarizing film to enable dichoptic treatment for amblyopia. In this study, we compared its effects with occlusion therapy using an eye patch. Fifty-eight patients (aged 4.7 ± 1.0 years) diagnosed with anisometric amblyopia were included and instructed to wear complete refractive correction glasses with either occlusion therapy using an eye patch (eye patch group) or dichoptic treatment using polarizing film (polarizing film group) for 2 h per day. We examined the improvement in the visual acuity and compliance rate of the patients 2 months after treatment initiation. After treatment, the polarizing film group showed significant improvement in visual acuity compared with the eye patch group. Moreover, the compliance rate was significantly better in the polarizing film group than in the eye patch group. In both groups, there was a significant correlation between the improvement in visual acuity and compliance rate. This new dichoptic treatment using a polarizing film was shown to be effective for anisometropic amblyopia.
Collapse
|
6
|
Battaglini L, Di Ponzio M, Ghiani A, Mena F, Santacesaria P, Casco C. Vision recovery with perceptual learning and non-invasive brain stimulation: Experimental set-ups and recent results, a review of the literature. Restor Neurol Neurosci 2022; 40:137-168. [PMID: 35964213 DOI: 10.3233/rnn-221261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vision is the sense which we rely on the most to interact with the environment and its integrity is fundamental for the quality of our life. However, around the globe, more than 1 billion people are affected by debilitating vision deficits. Therefore, finding a way to treat (or mitigate) them successfully is necessary. OBJECTIVE This narrative review aims to examine options for innovative treatment of visual disorders (retinitis pigmentosa, macular degeneration, optic neuropathy, refractory disorders, hemianopia, amblyopia), especially with Perceptual Learning (PL) and Electrical Stimulation (ES). METHODS ES and PL can enhance visual abilities in clinical populations, inducing plastic changes. We describe the experimental set-ups and discuss the results of studies using ES or PL or their combination in order to suggest, based on literature, which treatment is the best option for each clinical condition. RESULTS Positive results were obtained using ES and PL to enhance visual functions. For example, repetitive transorbital Alternating Current Stimulation (rtACS) appeared as the most effective treatment for pre-chiasmatic disorders such as optic neuropathy. A combination of transcranial Direct Current Stimulation (tDCS) and visual training seems helpful for people with hemianopia, while transcranial Random Noise Stimulation (tRNS) makes visual training more efficient in people with amblyopia and mild myopia. CONCLUSIONS This narrative review highlights the effect of different ES montages and PL in the treatment of visual disorders. Furthermore, new options for treatment are suggested. It is noteworthy to mention that, in some cases, unclear results emerged and others need to be more deeply investigated.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Michele Di Ponzio
- Department of General Psychology, University of Padova, Italy.,Istituto di Neuroscienze, Florence, Italy
| | - Andrea Ghiani
- Department of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Federica Mena
- Department of General Psychology, University of Padova, Italy
| | | | - Clara Casco
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Donato R, Pavan A, Cavallin G, Ballan L, Betteto L, Nucci M, Campana G. Mechanisms Underlying Directional Motion Processing and Form-Motion Integration Assessed with Visual Perceptual Learning. Vision (Basel) 2022; 6:vision6020029. [PMID: 35737415 PMCID: PMC9229663 DOI: 10.3390/vision6020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dynamic Glass patterns (GPs) are visual stimuli commonly employed to study form–motion interactions. There is brain imaging evidence that non-directional motion induced by dynamic GPs and directional motion induced by random dot kinematograms (RDKs) depend on the activity of the human motion complex (hMT+). However, whether dynamic GPs and RDKs rely on the same processing mechanisms is still up for dispute. The current study uses a visual perceptual learning (VPL) paradigm to try to answer this question. Identical pre- and post-tests were given to two groups of participants, who had to discriminate random/noisy patterns from coherent form (dynamic GPs) and motion (RDKs). Subsequently, one group was trained on dynamic translational GPs, whereas the other group on RDKs. On the one hand, the generalization of learning to the non-trained stimulus would indicate that the same mechanisms are involved in the processing of both dynamic GPs and RDKs. On the other hand, learning specificity would indicate that the two stimuli are likely to be processed by separate mechanisms possibly in the same cortical network. The results showed that VPL is specific to the stimulus trained, suggesting that directional and non-directional motion may depend on different neural mechanisms.
Collapse
Affiliation(s)
- Rita Donato
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy; (L.B.); (M.N.); (G.C.)
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy;
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, Rua Inácio Duarte 65, 3000-481 Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua Colégio Novo, 3000-115 Coimbra, Portugal
- Correspondence: (R.D.); (A.P.)
| | - Andrea Pavan
- Dipartimento di Psicologia, University of Bologna, Viale Berti Pichat, 5, 40127 Bologna, Italy
- Correspondence: (R.D.); (A.P.)
| | - Giovanni Cavallin
- Dipartimento di Matematica, University of Padova, Via Trieste 63, 35121 Padova, Italy;
| | - Lamberto Ballan
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy;
- Dipartimento di Matematica, University of Padova, Via Trieste 63, 35121 Padova, Italy;
| | - Luca Betteto
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy; (L.B.); (M.N.); (G.C.)
| | - Massimo Nucci
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy; (L.B.); (M.N.); (G.C.)
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy;
| | - Gianluca Campana
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy; (L.B.); (M.N.); (G.C.)
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy;
| |
Collapse
|
8
|
Zhong J, Wang W, Li J, Wang Y, Hu X, Feng L, Ye Q, Luo Y, Zhu Z, Li J, Yuan J. Effects of Perceptual Learning on Deprivation Amblyopia in Children with Limbal Dermoid: A Randomized Controlled Trial. J Clin Med 2022; 11:jcm11071879. [PMID: 35407483 PMCID: PMC8999262 DOI: 10.3390/jcm11071879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Limbal dermoid (LD) is a congenital ocular tumor that causes amblyopia and damages visual acuity (VA) and visual function. This study evaluated the therapeutic efficacy of perceptual learning (PL) toward improving contrast sensitivity function (CSF) and VA. A total of 25 children with LD and 25 normal children were compared in terms of CSF and VA. The LD group was further randomly allocated into two arms: nine underwent PL combined with patching and eight underwent patching only; eight patients quit the amblyopia treatment. The primary outcome was the area under log CSF (AULCSF), and the secondary outcome was the best corrected VA (BCVA). The CSF was obviously reduced in the LD group compared with that in the normal group. Moreover, the difference in the changes in the AULCSF between the PL and patching groups after 6 months of training was 0.59 (95% CI: 0.32, 0.86, p < 0.001), and the between-group difference in VA at 6 months was −0.30 (95% CI: −0.46, −0.14, p < 0.001). Children suffering from LD with amblyopia exhibited CSF deficits and VA loss simultaneously. PL could improve CSF and VA in the amblyopic eye better than patching.
Collapse
Affiliation(s)
- Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Jijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yiyao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
| | - Xiaoqing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
| | - Lei Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
| | - Qingqing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
| | - Yiming Luo
- Guangzhou LWT Technologies Co., Ltd., Guangzhou 510060, China;
| | - Zhengyuan Zhu
- Shenzhen CESI Information Technology Co., Ltd., Shenzhen 518100, China;
| | - Jinrong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Correspondence: (J.L.); (J.Y.); Tel./Fax: +86-20-8525-3133 (J.L. & J.Y.)
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (J.Z.); (W.W.); (J.L.); (Y.W.); (X.H.); (L.F.); (Q.Y.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Correspondence: (J.L.); (J.Y.); Tel./Fax: +86-20-8525-3133 (J.L. & J.Y.)
| |
Collapse
|
9
|
Rodán A, Candela Marroquín E, Jara García LC. An updated review about perceptual learning as a treatment for amblyopia. JOURNAL OF OPTOMETRY 2022; 15:3-34. [PMID: 33243673 PMCID: PMC8712591 DOI: 10.1016/j.optom.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 05/31/2023]
Abstract
The purpose of our work is to do an update of recent investigations about amblyopia treatment based on perceptual learning, dichoptic training and videogames. Therefore, we conducted a search of the studies published about this subject in the last six years. The review shows that the investigations during that period have used several kinds of treatments regarding their design (e.g., type of stimulus and context used, duration of the training), and in a wider range of age that also include adults. Most of the studies have found an improvement in some mono and binocular visual functions, such as visual acuity, contrast sensitivity and stereopsis, which for now, it seems advisable that these processes could be used, as an alternative or a complement of the traditional passive therapy. Nevertheless, it would be plausible to conduct additional, controlled and random, clinical trials in order to discover in a more deeply way which perceptive learning method of treatment is more effective for the improvement of visual functions and for how long the effects of the treatment could persist.
Collapse
|
10
|
Efficacy of Perceptual Learning-Based Vision Training as an Adjuvant to Occlusion Therapy in the Management of Amblyopia: A Pilot Study. Vision (Basel) 2021; 5:vision5010015. [PMID: 33807038 PMCID: PMC8006050 DOI: 10.3390/vision5010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022] Open
Abstract
A retrospective study was conducted to evaluate preliminarily the efficacy of perceptual learning (PL) visual training in medium-term follow-up with a specific software (Amblyopia iNET, Home Therapy Systems Inc., Gold Canyon, AZ, USA) for visual acuity (VA) and contrast sensitivity (CS) recovering in a sample of 14 moderate to severe amblyopic subjects with a previously unsuccessful outcome or failure with patching (PL Group). This efficacy was compared with that achieved in a patching control group (13 subjects, Patching 2). At one-month follow-up, a significant VA improvement in the amblyopic eye (AE) was observed in both groups, with no significant differences between them. Additionally, CS was measured in PL Group and exhibited a significant improvement in the AE one month after the beginning of treatment for 3, 6, 12, and 18 cycles/º (p = 0.003). Both groups showed long-lasting retention of visual improvements. A combined therapy of PL-based visual training and patching seems to be effective for improving VA in children with amblyopia who did not recover vision with patching alone or had a poor patching compliance. This preliminary outcome should be confirmed in future clinical trials.
Collapse
|
11
|
Tardif J, Watson MR, Giaschi D, Gosselin F. The Curve Visible on the Campbell-Robson Chart Is Not the Contrast Sensitivity Function. Front Neurosci 2021; 15:626466. [PMID: 33767608 PMCID: PMC7985182 DOI: 10.3389/fnins.2021.626466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Campbell-Robson chart is a highly popular figure used in psychophysics and visual perception textbooks to illustrate the Contrast Sensitivity Function (CSF). The chart depicts a grating which varies logarithmically in spatial frequency (SF) from left to right and in contrast from bottom to top. Campbell and Robson’s (1964) intuition was that the boundary between the grating and the homogeneous gray area (below threshold) would trace the shape of the observer’s own CSF. In this paper, we tested this intuition. A total of 170 participants (96 adults and 74 children) adjusted the four parameters of a truncated log-parabola directly onto a Campbell-Robson chart rendition and completed a gold-standard CSF evaluation. We hoped that this procedure which requires a mere three clicks on the computer mouse, would speed up the measurement of the CSF to under a minute. Unfortunately, the only parameter of the truncated log-parabola fitted to the gold-standard CSF data that could be predicted from the Campbell-Robson chart data was the peak sensitivity for the adult participants. We conclude that the curve visible on the Campbell-Robson chart cannot be used practically to measure the CSF.
Collapse
Affiliation(s)
- Jessica Tardif
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | | | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Frédéric Gosselin
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Battaglini L, Oletto CM, Contemori G, Barollo M, Ciavarelli A, Casco C. Perceptual learning improves visual functions in patients with albinistic bilateral amblyopia: A pilot study. Restor Neurol Neurosci 2021; 39:45-59. [PMID: 33554927 DOI: 10.3233/rnn-201043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several visual functions are impaired in patients with oculocutaneous albinism (OCA) associated to albinistic bilateral amblyopia (ABA). OBJECTIVE In this study, we aimed at exploring whether perceptual learning (PL) can improve visual functions in albinism. METHOD Six patients and six normal sighted controls, were trained in a contrast detection task with lateral masking. Participants were asked to choose which of the two intervals contained a foveally presented low-contrast Gabor patch. Targets were presented between higher contrast collinear flankers with equal spatial frequency. When increasing target-to-flanker distance, lateral interactions effect normally switches from inhibition to facilitation, up to no effect. RESULTS Our findings showed that before PL, only controls showed facilitation. After PL, results suggest that facilitatory lateral interactions are found both in controls as well as in albino patients. These results suggest that PL could induce higher processing efficiency at early cortical level. Moreover, PL positive effect seems to transfer to higher-level visual functions, but results were not very consistent among tasks (visual acuity, contrast sensitivity function, hyperacuity and foveal crowding). CONCLUSIONS Although a small sample size was tested, our findings suggest a rehabilitative potential of PL in improving visual functions in albinism.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy.,Department of Physics and Astronomy "Galileo Galilei", University of Padova, via Marzolo, Padova, Italy
| | | | - Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Michele Barollo
- Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy.,Dipartimento dei Beni Culturali, University of Padova, Padova, Italy
| | - Ambra Ciavarelli
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Ciavarelli A, Contemori G, Battaglini L, Barollo M, Casco C. Dyslexia and the magnocellular-parvocellular coactivaton hypothesis. Vision Res 2020; 179:64-74. [PMID: 33310233 DOI: 10.1016/j.visres.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Previous studies showed that the lateral masking of a fast-moving low spatial frequency (SF) target was strong when exerted by static flankers of lower or equal to the target SF and absent when flankers' SF was higher than the target's one. These masking and unmasking effects have been interpreted as due to Magnocellular-Magnocellular (M-M) inhibition and Parvocellular-on-Magnocellular (P-M) disinhibitory coactivation, respectively. Based on the hypothesis that the balance between the two systems is perturbed in Developmental Dyslexia (DD), we asked whether dyslexic children (DDs) behaved differently than Typically Developing children (TDs) in conditions of lateral masking. DDs and TDs performed a motion discrimination task, of a .5c/deg Gabor target moving at 16 deg/sec, either isolated or flanked by static Gabors with a SF of .125, .5 or 2 c/deg (Experiment 1). As a control, they also performed a contrast detection task of a static target, either isolated or flanked (Experiment 2). DDs did not perform any different from TDs with either a static target or an isolated moving target of low spatial frequency, thus suggesting efficient feedforward Magnocellular (M) and Parvocellular (P) processing. Also, DDs showed similar contrast thresholds to TDs in the M-M inhibition condition. Conversely, DDs did not recover from lateral masking in the M-P coactivation condition. In addition, their performance in this condition negatively correlated with non-words accuracy, supporting the suggestion that an inefficient Magno-Parvo coactivation may possibly be associated to both higher visual suppression and reduced perceptual stability during reading.
Collapse
Affiliation(s)
- Ambra Ciavarelli
- Department of General Psychology, University of Padova, Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy.
| | - Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Michele Barollo
- Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy; Dipartimento dei Beni Culturali, University of Padova, Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Stimuli Characteristics and Psychophysical Requirements for Visual Training in Amblyopia: A Narrative Review. J Clin Med 2020; 9:jcm9123985. [PMID: 33316960 PMCID: PMC7764820 DOI: 10.3390/jcm9123985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/03/2022] Open
Abstract
Active vision therapy using perceptual learning and/or dichoptic or binocular environments has shown its potential effectiveness in amblyopia, but some doubts remain about the type of stimuli and the mode and sequence of presentation that should be used. A search was performed in PubMed, obtaining 143 articles with information related to the stimuli used in amblyopia rehabilitation, as well as to the neural mechanisms implied in such therapeutic process. Visual deficits in amblyopia and their neural mechanisms associated are revised, including visual acuity loss, contrast sensitivity reduction and stereopsis impairment. Likewise, the most appropriate stimuli according to the literature that should be used for an efficient rehabilitation of the amblyopic eye are described in detail, including optotypes, Gabor’s patches, random-dot stimuli and Vernier’s stimuli. Finally, the properties of these stimuli that can be modified during the visual training are discussed, as well as the psychophysical method of their presentation and the type of environment used (perceptual learning, dichoptic stimulation or virtual reality). Vision therapy using all these revised concepts can be an effective option for treating amblyopia or accelerating the treatment period when combining with patching. It is essential to adapt the stimuli to the patient’s individual features in both monocular and binocular training.
Collapse
|
15
|
Wu D, Zhang P, Li C, Liu N, Jia W, Chen G, Ren W, Sun Y, Xiao W. Perceptual Learning at Higher Trained Cutoff Spatial Frequencies Induces Larger Visual Improvements. Front Psychol 2020; 11:265. [PMID: 32153473 PMCID: PMC7047335 DOI: 10.3389/fpsyg.2020.00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
It is well known that extensive practice of a perceptual task can improve visual performance, termed perceptual learning. The goal of the present study was to evaluate the dependency of visual improvements on the features of training stimuli (i.e., spatial frequency). Twenty-eight observers were divided into training and control groups. Visual acuity (VA) and contrast sensitivity function (CSF) were measured and compared before and after training. All observers in the training group were trained in a monocular grating detection task near their individual cutoff spatial frequencies. The results showed that perceptual learning induced significant visual improvement, which was dependent on the cutoff spatial frequency, with a greater improvement magnitude and transfer of perceptual learning observed for those trained with higher spatial frequencies. However, VA significantly improved following training but was not related to the cutoff spatial frequency. The results may broaden the understanding of the nature of the learning rule and the neural plasticity of different cortical areas.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Chenxi Li
- School of Nursing, Yueyang Vocational Technical College, Yueyang, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Wuli Jia
- Department of Psychology, School of Education Science, Huaiyin Normal University, Huai'an, China
| | - Ge Chen
- School of Arts and Design, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Weicong Ren
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Yuqi Sun
- Department of Systems Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Excitatory and inhibitory lateral interactions effects on contrast detection are modulated by tRNS. Sci Rep 2019; 9:19274. [PMID: 31848412 PMCID: PMC6917720 DOI: 10.1038/s41598-019-55602-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Contrast sensitivity for a Gabor signal is affected by collinear high-contrast Gabor flankers. The flankers reduce (inhibitory effect) or increase (facilitatory effect) sensitivity, at short (2λ) and intermediate (6λ) target-to-flanker separation respectively. We investigated whether these inhibitory/facilitatory sensitivity effects are modulated by transcranial random noise stimulation (tRNS) applied to the occipital and frontal cortex of human observers during task performance. Signal detection theory was used to measure sensitivity (d’) and the Criterion (C) in a contrast detection task, performed with sham or tRNS applied over the occipital or the frontal cortex. After occipital stimulation results show a tRNS-dependent increased sensitivity for the single Gabor signal of low but not high contrast. Moreover, results suggest a dissociation of the tRNS effect when the Gabor signal is presented with the flankers, consisting in a general increased sensitivity at 2λ where the flankers had an inhibitory effect (reduction of inhibition) and a decreased sensitivity at 6λ where the flankers had a facilitatory effect on the Gabor signal (reduction of facilitation). After a frontal stimulation, no specific effect of the tRNS was found. We account for these complex interactions between tRNS and flankers by assuming that tRNS not only enhances feedforward input from the Gabor signal to the cortex, but also enhances the excitatory or inhibitory lateral intracortical input from the flankers. The boosted lateral input depends on the excitation-inhibition (E/I) ratio, namely when the lateral input is weak, it is boosted by tRNS with consequent modification of the contrast-dependent E/I ratio.
Collapse
|
17
|
Contemori G, Battaglini L, Casco C. Contextual influences in the peripheral retina of patients with macular degeneration. Sci Rep 2019; 9:9284. [PMID: 31243292 PMCID: PMC6594941 DOI: 10.1038/s41598-019-45648-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Macular degeneration (MD) is the leading cause of low vision in the elderly population worldwide. In case of complete bilateral loss of central vision, MD patients start to show a preferred retinal region for fixation (PRL). Previous literature has reported functional changes that are connected with the emergence of the PRL. In this paper, we question whether the PRL undergoes a use-dependent cortical reorganization that alters the range of spatial lateral interactions between low-level filters. We asked whether there is a modulation of the excitatory/inhibitory lateral interactions or whether contextual influences are well accounted for by the same law that describes the integration response in normal viewers. In a group of 13 MD patients and 7 age-matched controls, we probed contextual influences by measuring the contrast threshold for a vertical target Gabor, flanked by two collinear high-contrast Gabors. Contextual influences of the collinear flankers were indicated by the changes in contrast threshold obtained at different target-to-flanker distances (λs) relative to the baseline orthogonal condition. Results showed that MDs had higher thresholds in the baseline condition and functional impairment in the identification tasks. Moreover, at the shortest λ, we found facilitatory rather than inhibitory contextual influence. No difference was found between the PRL and a symmetrical retinal position (non-PRL). By pulling together data from MD and controls we showed that in the periphery this inversion occurs when the target threshold approach the flankers’ contrast (about 1:3 ratio) and that for patients it does occur in both the PRL and a symmetrical retinal position (non-PRL). We conclude that contrary to previous interpretations, this modulation doesn’t seem to reflect use-dependent cortical reorganization but rather, it might result from a reduction of contrast gain for the target that promotes target-flankers grouping.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. .,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy. .,Université de Toulouse-UPS, Centre de Recherche Cerveau et Cognition, Toulouse, France.
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|