1
|
Miklós G, Halász L, Hasslberger M, Toth E, Manola L, Hagh Gooie S, van Elswijk G, Várkuti B, Erőss L. Sensory-substitution based sound perception using a spinal computer-brain interface. Sci Rep 2024; 14:24879. [PMID: 39438593 PMCID: PMC11496521 DOI: 10.1038/s41598-024-75779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Sensory substitution offers a promising approach to restore lost sensory functions. Here we show that spinal cord stimulation (SCS), typically used for chronic pain management, can potentially serve as a novel auditory sensory substitution device. We recruited 13 patients undergoing SCS implantation and translated everyday sound samples into personalized SCS patterns during their trial phase. In a sound identification task-where chance-level performance was 33.3%-participants ( n = 8 ) achieved a mean accuracy of 72.8% using only SCS input. We observed a weak positive correlation between stimulation bitrate and identification accuracy. A follow-up discrimination task ( n = 5 ) confirmed that reduced bitrates significantly impaired participants' ability to distinguish between consecutive SCS patterns, indicating effective processing of additional information at higher bitrates. These findings demonstrate the feasibility of using existing SCS technology to create a novel neural interface for a sound prosthesis. Our results pave the way for future research to enhance stimulation fidelity, assess long-term training effects, and explore integration with other auditory aids for comprehensive hearing rehabilitation.
Collapse
Affiliation(s)
- Gabriella Miklós
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- CereGate GmbH, München, Germany
| | - László Halász
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Albert Szent-Györgyi Medical School, Doctoral School of Clinical Medicine, Clinical and Experimental Research for Reconstructive and Organ-Sparing Surgery, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | - Loránd Erőss
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Snir A, Cieśla K, Ozdemir G, Vekslar R, Amedi A. Localizing 3D motion through the fingertips: Following in the footsteps of elephants. iScience 2024; 27:109820. [PMID: 38799571 PMCID: PMC11126990 DOI: 10.1016/j.isci.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Each sense serves a different specific function in spatial perception, and they all form a joint multisensory spatial representation. For instance, hearing enables localization in the entire 3D external space, while touch traditionally only allows localization of objects on the body (i.e., within the peripersonal space alone). We use an in-house touch-motion algorithm (TMA) to evaluate individuals' capability to understand externalized 3D information through touch, a skill that was not acquired during an individual's development or in evolution. Four experiments demonstrate quick learning and high accuracy in localization of motion using vibrotactile inputs on fingertips and successful audio-tactile integration in background noise. Subjective responses in some participants imply spatial experiences through visualization and perception of tactile "moving" sources beyond reach. We discuss our findings with respect to developing new skills in an adult brain, including combining a newly acquired "sense" with an existing one and computation-based brain organization.
Collapse
Affiliation(s)
- Adi Snir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Katarzyna Cieśla
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Nadarzyn, Poland
| | - Gizem Ozdemir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Rotem Vekslar
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| |
Collapse
|
3
|
Fletcher MD, Perry SW, Thoidis I, Verschuur CA, Goehring T. Improved tactile speech robustness to background noise with a dual-path recurrent neural network noise-reduction method. Sci Rep 2024; 14:7357. [PMID: 38548750 PMCID: PMC10978864 DOI: 10.1038/s41598-024-57312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Many people with hearing loss struggle to understand speech in noisy environments, making noise robustness critical for hearing-assistive devices. Recently developed haptic hearing aids, which convert audio to vibration, can improve speech-in-noise performance for cochlear implant (CI) users and assist those unable to access hearing-assistive devices. They are typically body-worn rather than head-mounted, allowing additional space for batteries and microprocessors, and so can deploy more sophisticated noise-reduction techniques. The current study assessed whether a real-time-feasible dual-path recurrent neural network (DPRNN) can improve tactile speech-in-noise performance. Audio was converted to vibration on the wrist using a vocoder method, either with or without noise reduction. Performance was tested for speech in a multi-talker noise (recorded at a party) with a 2.5-dB signal-to-noise ratio. An objective assessment showed the DPRNN improved the scale-invariant signal-to-distortion ratio by 8.6 dB and substantially outperformed traditional noise-reduction (log-MMSE). A behavioural assessment in 16 participants showed the DPRNN improved tactile-only sentence identification in noise by 8.2%. This suggests that advanced techniques like the DPRNN could substantially improve outcomes with haptic hearing aids. Low-cost haptic devices could soon be an important supplement to hearing-assistive devices such as CIs or offer an alternative for people who cannot access CI technology.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Iordanis Thoidis
- School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Carl A Verschuur
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Tobias Goehring
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
4
|
Schulte A, Marozeau J, Ruhe A, Büchner A, Kral A, Innes-Brown H. Improved speech intelligibility in the presence of congruent vibrotactile speech input. Sci Rep 2023; 13:22657. [PMID: 38114599 PMCID: PMC10730903 DOI: 10.1038/s41598-023-48893-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Vibrotactile stimulation is believed to enhance auditory speech perception, offering potential benefits for cochlear implant (CI) users who may utilize compensatory sensory strategies. Our study advances previous research by directly comparing tactile speech intelligibility enhancements in normal-hearing (NH) and CI participants, using the same paradigm. Moreover, we assessed tactile enhancement considering stimulus non-specific, excitatory effects through an incongruent audio-tactile control condition that did not contain any speech-relevant information. In addition to this incongruent audio-tactile condition, we presented sentences in an auditory only and a congruent audio-tactile condition, with the congruent tactile stimulus providing low-frequency envelope information via a vibrating probe on the index fingertip. The study involved 23 NH listeners and 14 CI users. In both groups, significant tactile enhancements were observed for congruent tactile stimuli (5.3% for NH and 5.4% for CI participants), but not for incongruent tactile stimulation. These findings replicate previously observed tactile enhancement effects. Juxtaposing our study with previous research, the informational content of the tactile stimulus emerges as a modulator of intelligibility: Generally, congruent stimuli enhanced, non-matching tactile stimuli reduced, and neutral stimuli did not change test outcomes. We conclude that the temporal cues provided by congruent vibrotactile stimuli may aid in parsing continuous speech signals into syllables and words, consequently leading to the observed improvements in intelligibility.
Collapse
Affiliation(s)
- Alina Schulte
- Department of Experimental Otology of the Clinics of Otolaryngology, Hannover Medical School, Hannover, Germany.
- Eriksholm Research Center, Oticon A/S, Snekkersten, Denmark.
| | - Jeremy Marozeau
- Music and Cochlear Implants Lab, Department of Health Technology, Technical University Denmark, Kongens Lyngby, Denmark
| | - Anna Ruhe
- Department of Experimental Otology of the Clinics of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Department of Experimental Otology of the Clinics of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Department of Experimental Otology of the Clinics of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hamish Innes-Brown
- Eriksholm Research Center, Oticon A/S, Snekkersten, Denmark
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Răutu IS, De Tiège X, Jousmäki V, Bourguignon M, Bertels J. Speech-derived haptic stimulation enhances speech recognition in a multi-talker background. Sci Rep 2023; 13:16621. [PMID: 37789043 PMCID: PMC10547762 DOI: 10.1038/s41598-023-43644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
Speech understanding, while effortless in quiet conditions, is challenging in noisy environments. Previous studies have revealed that a feasible approach to supplement speech-in-noise (SiN) perception consists in presenting speech-derived signals as haptic input. In the current study, we investigated whether the presentation of a vibrotactile signal derived from the speech temporal envelope can improve SiN intelligibility in a multi-talker background for untrained, normal-hearing listeners. We also determined if vibrotactile sensitivity, evaluated using vibrotactile detection thresholds, modulates the extent of audio-tactile SiN improvement. In practice, we measured participants' speech recognition in a multi-talker noise without (audio-only) and with (audio-tactile) concurrent vibrotactile stimulation delivered in three schemes: to the left or right palm, or to both. Averaged across the three stimulation delivery schemes, the vibrotactile stimulation led to a significant improvement of 0.41 dB in SiN recognition when compared to the audio-only condition. Notably, there were no significant differences observed between the improvements in these delivery schemes. In addition, audio-tactile SiN benefit was significantly predicted by participants' vibrotactile threshold levels and unimodal (audio-only) SiN performance. The extent of the improvement afforded by speech-envelope-derived vibrotactile stimulation was in line with previously uncovered vibrotactile enhancements of SiN perception in untrained listeners with no known hearing impairment. Overall, these results highlight the potential of concurrent vibrotactile stimulation to improve SiN recognition, especially in individuals with poor SiN perception abilities, and tentatively more so with increasing tactile sensitivity. Moreover, they lend support to the multimodal accounts of speech perception and research on tactile speech aid devices.
Collapse
Affiliation(s)
- I Sabina Răutu
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service de Neuroimagerie Translationnelle, Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- BCBL, Basque Center on Cognition, Brain and Language, 20009, San Sebastián, Spain
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Bertels
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- ULBabylab, Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
6
|
Fait S, Pighin S, Passerini A, Pavani F, Tentori K. Sensory and multisensory reasoning: Is Bayesian updating modality-dependent? Cognition 2023; 234:105355. [PMID: 36791607 DOI: 10.1016/j.cognition.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 02/16/2023]
Abstract
Bayesianism assumes that probabilistic updating does not depend on the sensory modality by which information is processed. In this study, we investigate whether probability judgments based on visual and auditory information conform to this assumption. In a series of five experiments, we found that this is indeed the case when information is acquired through a single modality (i.e., only auditory or only visual) but not necessarily so when it comes from multiple modalities (i.e., audio-visual). In the latter case, judgments prove more accurate when both visual and auditory information individually support (i.e., increase the probability of) the hypothesis they also jointly support (synergy condition) than when either visual or auditory information support one hypothesis that is not the one they jointly support (contrast condition). In the extreme case in which both visual and auditory information individually support an alternative hypothesis to the one they jointly support (i.e., double-contrast condition), participants' accuracy is not only lower than in the synergy condition but near chance. This synergy-contrast effect represents a violation of the assumption that information modality is irrelevant for Bayesian updating and indicates an important limitation of multisensory integration, one which has not been previously documented.
Collapse
Affiliation(s)
- Stefano Fait
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, n. 31 38068, Rovereto, TN, Italy
| | - Stefania Pighin
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, n. 31 38068, Rovereto, TN, Italy
| | - Andrea Passerini
- Information Engineering and Computer Science Department - DISI, University of Trento, Via Sommarive, n. 9, 38123 Povo, TN, Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, n. 31 38068, Rovereto, TN, Italy
| | - Katya Tentori
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, n. 31 38068, Rovereto, TN, Italy.
| |
Collapse
|
7
|
Oh Y, Kalpin N, Hunter J, Schwalm M. The impact of temporally coherent visual and vibrotactile cues on speech recognition in noise. JASA EXPRESS LETTERS 2023; 3:025203. [PMID: 36858994 DOI: 10.1121/10.0017326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inputs delivered to different sensory organs provide us with complementary speech information about the environment. The goal of this study was to establish which multisensory characteristics can facilitate speech recognition in noise. The major finding is that the tracking of temporal cues of visual/tactile speech synced with auditory speech can play a key role in speech-in-noise performance. This suggests that multisensory interactions are fundamentally important for speech recognition ability in noisy environments, and they require salient temporal cues. The amplitude envelope, serving as a reliable temporal cue source, can be applied through different sensory modalities when speech recognition is compromised.
Collapse
Affiliation(s)
- Yonghee Oh
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, Kentucky 40202, USA
| | - Nicole Kalpin
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA , , ,
| | - Jessica Hunter
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA , , ,
| | - Meg Schwalm
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA , , ,
| |
Collapse
|
8
|
Maimon A, Wald IY, Ben Oz M, Codron S, Netzer O, Heimler B, Amedi A. The Topo-Speech sensory substitution system as a method of conveying spatial information to the blind and vision impaired. Front Hum Neurosci 2023; 16:1058093. [PMID: 36776219 PMCID: PMC9909096 DOI: 10.3389/fnhum.2022.1058093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
Humans, like most animals, integrate sensory input in the brain from different sensory modalities. Yet humans are distinct in their ability to grasp symbolic input, which is interpreted into a cognitive mental representation of the world. This representation merges with external sensory input, providing modality integration of a different sort. This study evaluates the Topo-Speech algorithm in the blind and visually impaired. The system provides spatial information about the external world by applying sensory substitution alongside symbolic representations in a manner that corresponds with the unique way our brains acquire and process information. This is done by conveying spatial information, customarily acquired through vision, through the auditory channel, in a combination of sensory (auditory) features and symbolic language (named/spoken) features. The Topo-Speech sweeps the visual scene or image and represents objects' identity by employing naming in a spoken word and simultaneously conveying the objects' location by mapping the x-axis of the visual scene or image to the time it is announced and the y-axis by mapping the location to the pitch of the voice. This proof of concept study primarily explores the practical applicability of this approach in 22 visually impaired and blind individuals. The findings showed that individuals from both populations could effectively interpret and use the algorithm after a single training session. The blind showed an accuracy of 74.45%, while the visually impaired had an average accuracy of 72.74%. These results are comparable to those of the sighted, as shown in previous research, with all participants above chance level. As such, we demonstrate practically how aspects of spatial information can be transmitted through non-visual channels. To complement the findings, we weigh in on debates concerning models of spatial knowledge (the persistent, cumulative, or convergent models) and the capacity for spatial representation in the blind. We suggest the present study's findings support the convergence model and the scenario that posits the blind are capable of some aspects of spatial representation as depicted by the algorithm comparable to those of the sighted. Finally, we present possible future developments, implementations, and use cases for the system as an aid for the blind and visually impaired.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Sophie Codron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Ophir Netzer
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
9
|
Shvadron S, Snir A, Maimon A, Yizhar O, Harel S, Poradosu K, Amedi A. Shape detection beyond the visual field using a visual-to-auditory sensory augmentation device. Front Hum Neurosci 2023; 17:1058617. [PMID: 36936618 PMCID: PMC10017858 DOI: 10.3389/fnhum.2023.1058617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Current advancements in both technology and science allow us to manipulate our sensory modalities in new and unexpected ways. In the present study, we explore the potential of expanding what we perceive through our natural senses by utilizing a visual-to-auditory sensory substitution device (SSD), the EyeMusic, an algorithm that converts images to sound. The EyeMusic was initially developed to allow blind individuals to create a spatial representation of information arriving from a video feed at a slow sampling rate. In this study, we aimed to use the EyeMusic for the blind areas of sighted individuals. We use it in this initial proof-of-concept study to test the ability of sighted subjects to combine visual information with surrounding auditory sonification representing visual information. Participants in this study were tasked with recognizing and adequately placing the stimuli, using sound to represent the areas outside the standard human visual field. As such, the participants were asked to report shapes' identities as well as their spatial orientation (front/right/back/left), requiring combined visual (90° frontal) and auditory input (the remaining 270°) for the successful performance of the task (content in both vision and audition was presented in a sweeping clockwise motion around the participant). We found that participants were successful at a highly above chance level after a brief 1-h-long session of online training and one on-site training session of an average of 20 min. They could even draw a 2D representation of this image in some cases. Participants could also generalize, recognizing new shapes they were not explicitly trained on. Our findings provide an initial proof of concept indicating that sensory augmentation devices and techniques can potentially be used in combination with natural sensory information in order to expand the natural fields of sensory perception.
Collapse
Affiliation(s)
- Shira Shvadron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- *Correspondence: Shira Shvadron,
| | - Adi Snir
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Or Yizhar
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition (MPDCC), Max Planck Institute for Human Development, Berlin, Germany
| | - Sapir Harel
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Keinan Poradosu
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Weizmann Institute of Science, Rehovot, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
10
|
Oh Y, Schwalm M, Kalpin N. Multisensory benefits for speech recognition in noisy environments. Front Neurosci 2022; 16:1031424. [PMID: 36340778 PMCID: PMC9630463 DOI: 10.3389/fnins.2022.1031424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
A series of our previous studies explored the use of an abstract visual representation of the amplitude envelope cues from target sentences to benefit speech perception in complex listening environments. The purpose of this study was to expand this auditory-visual speech perception to the tactile domain. Twenty adults participated in speech recognition measurements in four different sensory modalities (AO, auditory-only; AV, auditory-visual; AT, auditory-tactile; AVT, auditory-visual-tactile). The target sentences were fixed at 65 dB sound pressure level and embedded within a simultaneous speech-shaped noise masker of varying degrees of signal-to-noise ratios (-7, -5, -3, -1, and 1 dB SNR). The amplitudes of both abstract visual and vibrotactile stimuli were temporally synchronized with the target speech envelope for comparison. Average results showed that adding temporally-synchronized multimodal cues to the auditory signal did provide significant improvements in word recognition performance across all three multimodal stimulus conditions (AV, AT, and AVT), especially at the lower SNR levels of -7, -5, and -3 dB for both male (8-20% improvement) and female (5-25% improvement) talkers. The greatest improvement in word recognition performance (15-19% improvement for males and 14-25% improvement for females) was observed when both visual and tactile cues were integrated (AVT). Another interesting finding in this study is that temporally synchronized abstract visual and vibrotactile stimuli additively stack in their influence on speech recognition performance. Our findings suggest that a multisensory integration process in speech perception requires salient temporal cues to enhance speech recognition ability in noisy environments.
Collapse
Affiliation(s)
- Yonghee Oh
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, KY, United States
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Meg Schwalm
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Nicole Kalpin
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Enhancement of speech-in-noise comprehension through vibrotactile stimulation at the syllabic rate. Proc Natl Acad Sci U S A 2022; 119:e2117000119. [PMID: 35312362 PMCID: PMC9060510 DOI: 10.1073/pnas.2117000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Syllables are important building blocks of speech. They occur at a rate between 4 and 8 Hz, corresponding to the theta frequency range of neural activity in the cerebral cortex. When listening to speech, the theta activity becomes aligned to the syllabic rhythm, presumably aiding in parsing a speech signal into distinct syllables. However, this neural activity cannot only be influenced by sound, but also by somatosensory information. Here, we show that the presentation of vibrotactile signals at the syllabic rate can enhance the comprehension of speech in background noise. We further provide evidence that this multisensory enhancement of speech comprehension reflects the multisensory integration of auditory and tactile information in the auditory cortex. Speech unfolds over distinct temporal scales, in particular, those related to the rhythm of phonemes, syllables, and words. When a person listens to continuous speech, the syllabic rhythm is tracked by neural activity in the theta frequency range. The tracking plays a functional role in speech processing: Influencing the theta activity through transcranial current stimulation, for instance, can impact speech perception. The theta-band activity in the auditory cortex can also be modulated through the somatosensory system, but the effect on speech processing has remained unclear. Here, we show that vibrotactile feedback presented at the rate of syllables can modulate and, in fact, enhance the comprehension of a speech signal in background noise. The enhancement occurs when vibrotactile pulses occur at the perceptual center of the syllables, whereas a temporal delay between the vibrotactile signals and the speech stream can lead to a lower level of speech comprehension. We further investigate the neural mechanisms underlying the audiotactile integration through electroencephalographic (EEG) recordings. We find that the audiotactile stimulation modulates the neural response to the speech rhythm, as well as the neural response to the vibrotactile pulses. The modulations of these neural activities reflect the behavioral effects on speech comprehension. Moreover, we demonstrate that speech comprehension can be predicted by particular aspects of the neural responses. Our results evidence a role of vibrotactile information for speech processing and may have applications in future auditory prosthesis.
Collapse
|
12
|
Cieśla K, Wolak T, Lorens A, Mentzel M, Skarżyński H, Amedi A. Effects of training and using an audio-tactile sensory substitution device on speech-in-noise understanding. Sci Rep 2022; 12:3206. [PMID: 35217676 PMCID: PMC8881456 DOI: 10.1038/s41598-022-06855-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding speech in background noise is challenging. Wearing face-masks, imposed by the COVID19-pandemics, makes it even harder. We developed a multi-sensory setup, including a sensory substitution device (SSD) that can deliver speech simultaneously through audition and as vibrations on the fingertips. The vibrations correspond to low frequencies extracted from the speech input. We trained two groups of non-native English speakers in understanding distorted speech in noise. After a short session (30-45 min) of repeating sentences, with or without concurrent matching vibrations, we showed comparable mean group improvement of 14-16 dB in Speech Reception Threshold (SRT) in two test conditions, i.e., when the participants were asked to repeat sentences only from hearing and also when matching vibrations on fingertips were present. This is a very strong effect, if one considers that a 10 dB difference corresponds to doubling of the perceived loudness. The number of sentence repetitions needed for both types of training to complete the task was comparable. Meanwhile, the mean group SNR for the audio-tactile training (14.7 ± 8.7) was significantly lower (harder) than for the auditory training (23.9 ± 11.8), which indicates a potential facilitating effect of the added vibrations. In addition, both before and after training most of the participants (70-80%) showed better performance (by mean 4-6 dB) in speech-in-noise understanding when the audio sentences were accompanied with matching vibrations. This is the same magnitude of multisensory benefit that we reported, with no training at all, in our previous study using the same experimental procedures. After training, performance in this test condition was also best in both groups (SRT ~ 2 dB). The least significant effect of both training types was found in the third test condition, i.e. when participants were repeating sentences accompanied with non-matching tactile vibrations and the performance in this condition was also poorest after training. The results indicate that both types of training may remove some level of difficulty in sound perception, which might enable a more proper use of speech inputs delivered via vibrotactile stimulation. We discuss the implications of these novel findings with respect to basic science. In particular, we show that even in adulthood, i.e. long after the classical "critical periods" of development have passed, a new pairing between a certain computation (here, speech processing) and an atypical sensory modality (here, touch) can be established and trained, and that this process can be rapid and intuitive. We further present possible applications of our training program and the SSD for auditory rehabilitation in patients with hearing (and sight) deficits, as well as healthy individuals in suboptimal acoustic situations.
Collapse
Affiliation(s)
- K Cieśla
- The Baruch Ivcher Institute for Brain, Cognition & Technology, The Baruch Ivcher School of Psychology and the Ruth and Meir Rosental Brain Imaging Center, Reichman University, Herzliya, Israel. .,World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.
| | - T Wolak
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - A Lorens
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - M Mentzel
- The Baruch Ivcher Institute for Brain, Cognition & Technology, The Baruch Ivcher School of Psychology and the Ruth and Meir Rosental Brain Imaging Center, Reichman University, Herzliya, Israel
| | - H Skarżyński
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - A Amedi
- The Baruch Ivcher Institute for Brain, Cognition & Technology, The Baruch Ivcher School of Psychology and the Ruth and Meir Rosental Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
13
|
Fletcher MD. Can Haptic Stimulation Enhance Music Perception in Hearing-Impaired Listeners? Front Neurosci 2021; 15:723877. [PMID: 34531717 PMCID: PMC8439542 DOI: 10.3389/fnins.2021.723877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring hearing in severely-to-profoundly hearing-impaired individuals. However, users often struggle to deconstruct complex auditory scenes with multiple simultaneous sounds, which can result in reduced music enjoyment and impaired speech understanding in background noise. Hearing aid users often have similar issues, though these are typically less acute. Several recent studies have shown that haptic stimulation can enhance CI listening by giving access to sound features that are poorly transmitted through the electrical CI signal. This “electro-haptic stimulation” improves melody recognition and pitch discrimination, as well as speech-in-noise performance and sound localization. The success of this approach suggests it could also enhance auditory perception in hearing-aid users and other hearing-impaired listeners. This review focuses on the use of haptic stimulation to enhance music perception in hearing-impaired listeners. Music is prevalent throughout everyday life, being critical to media such as film and video games, and often being central to events such as weddings and funerals. It represents the biggest challenge for signal processing, as it is typically an extremely complex acoustic signal, containing multiple simultaneous harmonic and inharmonic sounds. Signal-processing approaches developed for enhancing music perception could therefore have significant utility for other key issues faced by hearing-impaired listeners, such as understanding speech in noisy environments. This review first discusses the limits of music perception in hearing-impaired listeners and the limits of the tactile system. It then discusses the evidence around integration of audio and haptic stimulation in the brain. Next, the features, suitability, and success of current haptic devices for enhancing music perception are reviewed, as well as the signal-processing approaches that could be deployed in future haptic devices. Finally, the cutting-edge technologies that could be exploited for enhancing music perception with haptics are discussed. These include the latest micro motor and driver technology, low-power wireless technology, machine learning, big data, and cloud computing. New approaches for enhancing music perception in hearing-impaired listeners could substantially improve quality of life. Furthermore, effective haptic techniques for providing complex sound information could offer a non-invasive, affordable means for enhancing listening more broadly in hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Fletcher MD, Verschuur CA. Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening. Front Neurosci 2021; 15:581414. [PMID: 34177440 PMCID: PMC8219940 DOI: 10.3389/fnins.2021.581414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring speech perception for severely to profoundly deaf individuals. Despite their success, several limitations remain, particularly in CI users' ability to understand speech in noisy environments, locate sound sources, and enjoy music. A new multimodal approach has been proposed that uses haptic stimulation to provide sound information that is poorly transmitted by the implant. This augmenting of the electrical CI signal with haptic stimulation (electro-haptic stimulation; EHS) has been shown to improve speech-in-noise performance and sound localization in CI users. There is also evidence that it could enhance music perception. We review the evidence of EHS enhancement of CI listening and discuss key areas where further research is required. These include understanding the neural basis of EHS enhancement, understanding the effectiveness of EHS across different clinical populations, and the optimization of signal-processing strategies. We also discuss the significant potential for a new generation of haptic neuroprosthetic devices to aid those who cannot access hearing-assistive technology, either because of biomedical or healthcare-access issues. While significant further research and development is required, we conclude that EHS represents a promising new approach that could, in the near future, offer a non-invasive, inexpensive means of substantially improving clinical outcomes for hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D. Fletcher
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
- Faculty of Engineering and Physical Sciences, Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Carl A. Verschuur
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
15
|
Buchs G, Haimler B, Kerem M, Maidenbaum S, Braun L, Amedi A. A self-training program for sensory substitution devices. PLoS One 2021; 16:e0250281. [PMID: 33905446 PMCID: PMC8078811 DOI: 10.1371/journal.pone.0250281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through audition or touch, targeting blind and visually impaired individuals. One bottleneck towards adopting SSDs in everyday life by blind users, is the constant dependency on sighted instructors throughout the learning process. Here, we present a proof-of-concept for the efficacy of an online self-training program developed for learning the basics of the EyeMusic visual-to-auditory SSD tested on sighted blindfolded participants. Additionally, aiming to identify the best training strategy to be later re-adapted for the blind, we compared multisensory vs. unisensory as well as perceptual vs. descriptive feedback approaches. To these aims, sighted participants performed identical SSD-stimuli identification tests before and after ~75 minutes of self-training on the EyeMusic algorithm. Participants were divided into five groups, differing by the feedback delivered during training: auditory-descriptive, audio-visual textual description, audio-visual perceptual simultaneous and interleaved, and a control group which had no training. At baseline, before any EyeMusic training, participants SSD objects’ identification was significantly above chance, highlighting the algorithm’s intuitiveness. Furthermore, self-training led to a significant improvement in accuracy between pre- and post-training tests in each of the four feedback groups versus control, though no significant difference emerged among those groups. Nonetheless, significant correlations between individual post-training success rates and various learning measures acquired during training, suggest a trend for an advantage of multisensory vs. unisensory feedback strategies, while no trend emerged for perceptual vs. descriptive strategies. The success at baseline strengthens the conclusion that cross-modal correspondences facilitate learning, given SSD algorithms are based on such correspondences. Additionally, and crucially, the results highlight the feasibility of self-training for the first stages of SSD learning, and suggest that for these initial stages, unisensory training, easily implemented also for blind and visually impaired individuals, may suffice. Together, these findings will potentially boost the use of SSDs for rehabilitation.
Collapse
Affiliation(s)
- Galit Buchs
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (GB)
| | - Benedetta Haimler
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Center of Advanced Technologies in Rehabilitation (CATR), The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menachem Kerem
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
| | - Shachar Maidenbaum
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Biomedical Engineering, Ben Gurion University, Beersheba, Israel
| | - Liraz Braun
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- * E-mail: (AA); (GB)
| |
Collapse
|
16
|
Fletcher MD. Using haptic stimulation to enhance auditory perception in hearing-impaired listeners. Expert Rev Med Devices 2020; 18:63-74. [PMID: 33372550 DOI: 10.1080/17434440.2021.1863782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hearing-assistive devices, such as hearing aids and cochlear implants, transform the lives of hearing-impaired people. However, users often struggle to locate and segregate sounds. This leads to impaired threat detection and an inability to understand speech in noisy environments. Recent evidence suggests that segregation and localization can be improved by providing missing sound-information through haptic stimulation. AREAS COVERED This article reviews the evidence that haptic stimulation can effectively provide sound information. It then discusses the research and development required for this approach to be implemented in a clinically viable device. This includes discussion of what sound information should be provided and how that information can be extracted and delivered. EXPERT OPINION Although this research area has only recently emerged, it builds on a significant body of work showing that sound information can be effectively transferred through haptic stimulation. Current evidence suggests that haptic stimulation is highly effective at providing missing sound-information to cochlear implant users. However, a great deal of work remains to implement this approach in an effective wearable device. If successful, such a device could offer an inexpensive, noninvasive means of improving educational, work, and social experiences for hearing-impaired individuals, including those without access to hearing-assistive devices.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, Southampton, UK.,Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Fletcher MD, Zgheib J. Haptic sound-localisation for use in cochlear implant and hearing-aid users. Sci Rep 2020; 10:14171. [PMID: 32843659 PMCID: PMC7447810 DOI: 10.1038/s41598-020-70379-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Users of hearing-assistive devices often struggle to locate and segregate sounds, which can make listening in schools, cafes, and busy workplaces extremely challenging. A recent study in unilaterally implanted CI users showed that sound-localisation was improved when the audio received by behind-the-ear devices was converted to haptic stimulation on each wrist. We built on this work, using a new signal-processing approach to improve localisation accuracy and increase generalisability to a wide range of stimuli. We aimed to: (1) improve haptic sound-localisation accuracy using a varied stimulus set and (2) assess whether accuracy improved with prolonged training. Thirty-two adults with normal touch perception were randomly assigned to an experimental or control group. The experimental group completed a 5-h training regime and the control group were not trained. Without training, haptic sound-localisation was substantially better than in previous work on haptic sound-localisation. It was also markedly better than sound-localisation by either unilaterally or bilaterally implanted CI users. After training, accuracy improved, becoming better than for sound-localisation by bilateral hearing-aid users. These findings suggest that a wrist-worn haptic device could be effective for improving spatial hearing for a range of hearing-impaired listeners.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK. .,Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Jana Zgheib
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|