1
|
Kruse E, Abdalrahman T, Selhorst P, Franz T. Mathematical model for force and energy of virion-cell interactions during full engulfment in HIV: Impact of virion maturation and host cell morphology. Biomech Model Mechanobiol 2023; 22:1847-1855. [PMID: 37322329 PMCID: PMC10613145 DOI: 10.1007/s10237-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Viral endocytosis involves elastic cell deformation, driven by chemical adhesion energy, and depends on physical interactions between the virion and cell membrane. These interactions are not easy to quantify experimentally. Hence, this study aimed to develop a mathematical model of the interactions of HIV particles with host cells and explore the effects of mechanical and morphological parameters during full virion engulfment. The invagination force and engulfment energy were described as viscoelastic and linear-elastic functions of radius and elastic modulus of virion and cell, ligand-receptor energy density and engulfment depth. The influence of changes in the virion-cell contact geometry representing different immune cells and ultrastructural membrane features and the decrease in virion radius and shedding of gp120 proteins during maturation on invagination force and engulfment energy was investigated. A low invagination force and high ligand-receptor energy are associated with high virion entry ability. The required invagination force was the same for immune cells of different sizes but lower for a local convex geometry of the cell membrane at the virion length scale. This suggests that localized membrane features of immune cells play a role in viral entry ability. The available engulfment energy decreased during virion maturation, indicating the involvement of additional biological or biochemical changes in viral entry. The developed mathematical model offers potential for the mechanobiological assessment of the invagination of enveloped viruses towards improving the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Elizabeth Kruse
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Philippe Selhorst
- Division of Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa.
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Paul A, Kumar S, Kaoud TS, Pickett MR, Bohanon AL, Zoldan J, Dalby KN, Parekh SH. Biomechanical Dependence of SARS-CoV-2 Infections. ACS APPLIED BIO MATERIALS 2022; 5:2307-2315. [PMID: 35486915 PMCID: PMC9063985 DOI: 10.1021/acsabm.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Older people have been disproportionately vulnerable to the current SARS-CoV-2 pandemic, with an increased risk of severe complications and death compared to other age groups. A mix of underlying factors has been speculated to give rise to this differential infection outcome including changes in lung physiology, weakened immunity, and severe immune response. Our study focuses on the impact of biomechanical changes in lungs that occur as individuals age, that is, the stiffening of the lung parenchyma and increased matrix fiber density. We used hydrogels with an elastic modulus of 0.2 and 50 kPa and conventional tissue culture surfaces to investigate how infection rate changes with parenchymal tissue stiffness in lung epithelial cells challenged with SARS-CoV-2 Spike (S) protein pseudotyped lentiviruses. Further, we employed electrospun fiber matrices to isolate the effect of matrix density. Given the recent data highlighting the importance of alternative virulent strains, we included both the native strain identified in early 2020 and an early S protein variant (D614G) that was shown to increase the viral infectivity markedly. Our results show that cells on softer and sparser scaffolds, closer resembling younger lungs, exhibit higher infection rates by the WT and D614G variant. This suggests that natural changes in lung biomechanics do not increase the propensity for SARS-CoV-2 infection and that other factors, such as a weaker immune system, may contribute to increased disease burden in the elderly.
Collapse
Affiliation(s)
- Alexandra Paul
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
- Department of Biology and Biological Engineering,
Chalmers University of Technology, SE-412 98 Gothenburg,
Sweden
| | - Sachin Kumar
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
- Centre for Biomedical Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016,
India
- All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Madison R. Pickett
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Amanda L. Bohanon
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Janet Zoldan
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Sapun H. Parekh
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| |
Collapse
|