Zhao X, Yang C, Lyu Y, Xu Y, Han Z, Zhao H. Tissue ultrasound imaging based on wavelet correlation analysis and pulse-inversion technique.
Technol Health Care 2024;
32:31-53. [PMID:
37781821 DOI:
10.3233/thc-220403]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND
Pulse-inversion-based tissue harmonic imaging has been utilized for many years because it can effectively eliminate the harmonic leakage and produce low side-lobe. However, the pulse inversion method is sensitive to imaging object movements, which may result in motion artifacts. Spatial resolution and contrast were limited.
OBJECTIVE
To improve ultrasound image quality by a new pulse-inversion-based tissue harmonic imaging technique.
METHODS
Continuous wavelet transform is applied to investigate the correlation between mother wavelet and the received echoes from two opposite pulses. To get a better correlation, a novel mother wavelet named 'tissue wavelet' is designed based on the Khokhlov-Zabolotskaya- Kuznetsov (KZK) wave equation. Radio frequency data were obtained from open Ultrasonix SonixTouch imaging system. Experiments were carried on ultrasonic tissue phantom, human carotid artery and human liver.
RESULTS
The average improvement of lateral spatial resolution is 49.52% compared to pulse-inversion-based tissue second-harmonic Imaging (PIHI). Contrast ratio (CR) and contrast-to-noise ratio (CNR) increased by 5.55 dB and 1.40 dB over PIHI. Tissue wavelet performs better than Mexh and Morl wavelet in lateral spatial resolution, CR, and CNR.
CONCLUSION
The proposed technique effectively improves the imaging quality in lateral spatial resolution, CR, and CNR.
Collapse