1
|
Steinberg N, Elias G, Zeev A, Witchalls J, Waddington G. The Function of the Proprioceptive, Vestibular and Visual Systems Following Fatigue in Individuals With and Without Chronic Ankle Instability. Percept Mot Skills 2023; 130:239-259. [PMID: 36138519 DOI: 10.1177/00315125221128634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To maintain postural balance, the proprioceptive, vestibular, and visual systems continuously provide body position and movement data to the central nervous system. In this study, our main aim was to examine, for the first time, the influence of anaerobically or aerobically induced fatigue on these separate functions in persons with and without chronic ankle instability (CAI). We obtained assessments pre- and post-fatigue protocols from 60 physical education students (Mage = 24.3, SD = 3.4) Twenty-seven students had CAI, and 33 students did not have CAI). To measure proprioception, we used the AMEDA device; for vision, we used near point of convergence (NPC); and, for vestibular function, we used subjective visual vertical (SVV). We found a pre-post proprioception (AMEDA) effect in the aerobic group (p < .001), and a visual (NPC) effect in both anaerobic and aerobic participant groups (both p < .001). There were no visual system (NPC) fatigue effect differences among aerobic or anerobic participants who had or did not have CAI (p = .047); there was a significant aerobic fatigue effect on proprioception (AMEDA) (p = .010) that favored participants without CAI. There was a significant interaction effect between time of testing and CAI for visual (NPC) (p = .003) in the aerobic group only. In both the anaerobic and aerobic groups, post-fatigue vestibular function (AMEDA) was significantly lower for those with than those without CAI (anaerobic: p = .030; and aerobic: p =.016). Thus, post-fatigue, participants with CAI showed worse proprioceptive, visual, and vestibular function than those without CAI. Future investigators should further examine each movement sense system in individuals with CAI.
Collapse
Affiliation(s)
- Nili Steinberg
- Wingate College of Physical Education and Sports Sciences, 172890Wingate Institute, Netanya, Israel
| | - Gal Elias
- Wingate College of Physical Education and Sports Sciences, 172890Wingate Institute, Netanya, Israel
| | - Aviva Zeev
- Wingate College of Physical Education and Sports Sciences, 172890Wingate Institute, Netanya, Israel
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, 110446University of Canberra, Canberra, ACT, Australia
| | - Gordon Waddington
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
2
|
李 越, 张 勤, 马 孝, 沈 佳, 金 玉, 陈 向, 杨 军, 陈 建. [The effect of different rotation modes on testing resulting of the subjective visual vertical]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:665-669. [PMID: 36036065 PMCID: PMC10127615 DOI: 10.13201/j.issn.2096-7993.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Objective:To investigate the effect of different rotations modes of control rod on testing results of the subjective visual vertical (SVV). Methods:Twenty-four normal young volunteers were selected for this study, and the control rod of SVV was rotated in clockwise, counterclockwise and any direction at the head tilt-positions of 0°, 45° left and 45° right. The differences of SVV deflection angle values at different rotation modes were analyzed. Results:①The deviation angle values of SVV obtained by rotating the control rod in clockwise, counterclockwise and any direction at the head tilt-positions of 0° were 1.56°±0.21°, 3.05°±0.24°, and 2.16°±0.22°, respectively,and the difference was statistically significant (P<0.05),the deviation angle value of SVV in clockwise direction was smaller; ②At head tilt-positions of 45° left, the SVV deviation angle values obtained by rotating the control rod in three rotation modes were 2.59°±0.53°, 4.03°±0.51°, and 3.49°±0.54°, respectively, and the difference was statistically significant(P<0.05),the deviation angle value in the clockwise direction was also smaller; ③At the head tilt-positions of 45° right, the SVV deviation angle values in three modes were 4.68°±0.58°, 7.23°±0.72°, and 5.93°±0.96°, respectively, and the difference was statistically significant (P<0.05),the deviation value of SVV was also smaller when rotated in the clockwise direction; ④Comparison of SVV deviation angle values in three rotation modes at the head tilt-positions of 45° left and 45° right showed that there was no statistical difference in clockwise and in any direction (P>0.05), while the difference was statistically significant when rotated in the counterclockwise direction (P<0.05). Conclusion:Different rotation modes of the control rod during SVV testing will affect the test results. Rotating the control rod in clockwise direction to make the SVV values more accurate is recommended.
Collapse
Affiliation(s)
- 越 李
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 勤 张
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 孝宝 马
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 佳丽 沈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 玉莲 金
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 向平 陈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 军 杨
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 建勇 陈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| |
Collapse
|
3
|
An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage. J Neurosci 2021; 41:3879-3888. [PMID: 33731447 DOI: 10.1523/jneurosci.2204-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage.SIGNIFICANCE STATEMENT Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.
Collapse
|