Gao H, Zhang L, Grimmer R, Fahrig R. Physics-based spectral compensation algorithm for x-ray CT with primary modulator.
Phys Med Biol 2019;
64:125006. [PMID:
30999285 DOI:
10.1088/1361-6560/ab1ad0]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-ray computed tomography (CT) scatter correction using primary modulator has been continuously developed over the past years, with progress in improving the performance of scatter correction. In this work, we further advance the primary modulator technique towards practical applications where the spectral nonuniformity caused by the modulator continues to be a challenging problem. A physics-based spectral compensation algorithm is proposed to adaptively correct for the spectral nonuniformity, and hence to reduce the resultant ring artifacts on reconstructed CT images. First, an initial spectrum of the CT system without the primary modulator is modeled using an understanding of x-ray CT physics, and optimized by an expectation maximization method; then, the optimized estimation of the initial spectrum is utilized to adaptively calculate the effective modulator thickness from measured transmissions of the primary modulator at each detector element, leading to a set of new spectra that is able to capture the nonuniform spectral distribution of the primary modulator; finally, using the modulator-modeled spectrum, a beam hardening mapping function is generated and beam hardening correction is applied to CT projections. A CatPhan600 phantom and an anthropomorphic thorax phantom were scanned with three different primary modulators to evaluate the approach. For the Catphan phantom, the spectral compensation algorithm efficiently removes the ring (and band) artifacts that otherwise dominate the reconstructed CT image. For the three modulators with nominal copper thickness of 52.5, 105 and 210 [Formula: see text]m, our method reduces the CT number nonuniformity from 147.9, 436.2 and 696.4 Hounsfield units (HU) to 14.6, 26.2 and 13.6 HU, respectively, close to that of the reference image (i.e. 7.5 HU). For the thorax phantom, the ring artifacts are also suppressed significantly on the transaxial image; on the sagittal image, the alternating black-and-white patterns are largely removed, with the CT number nonuniformity being reduced from 282.0 HU to 38.5 HU.
Collapse