1
|
Kalasauskas D, Kosterhon M, Kurz E, Schmidt L, Altmann S, Grauhan NF, Sommer C, Othman A, Brockmann MA, Ringel F, Keric N. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Sci Rep 2024; 14:20586. [PMID: 39232068 PMCID: PMC11374997 DOI: 10.1038/s41598-024-71200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Preoperative identification of intracranial meningiomas with aggressive behaviour may help in choosing the optimal treatment strategy. Radiomics is emerging as a powerful diagnostic tool with potential applications in patient risk stratification. In this study, we aimed to compare the predictive value of conventional, semantic based and radiomic analyses to determine CNS WHO grade and early tumour relapse in intracranial meningiomas. We performed a single-centre retrospective analysis of intracranial meningiomas operated between 2007 and 2018. Recurrence within 5 years after Simpson Grade I-III resection was considered as early. Preoperative T1 CE MRI sequences were analysed conventionally by two radiologists. Additionally a semantic feature score based on systematic analysis of morphological characteristics was developed and a radiomic analysis were performed. For the radiomic model, tumour volume was extracted manually, 791 radiomic features were extracted. Eight feature selection algorithms and eight machine learning methods were used. Models were analysed using test and training datasets. In total, 226 patients were included. There were 21% CNS WHO grade 2 tumours, no CNS WHO grade 3 tumour, and 25 (11%) tumour recurrences were detected in total. In ROC analysis the best radiomic models demonstrated superior performance for determination of CNS WHO grade (AUC 0.930) and early recurrence (AUC 0.892) in comparison to the semantic feature score (AUC 0.74 and AUC 0.65) and conventional radiological analysis (AUC 0.65 and 0.54). The combination of human classifiers, semantic score and radiomic analysis did not markedly increase the model performance. Radiomic analysis is a promising tool for preoperative identification of aggressive and atypical intracranial meningiomas and could become a useful tool in the future.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Elena Kurz
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Leon Schmidt
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
2
|
Khan M, Hanna C, Findlay M, Lucke-Wold B, Karsy M, Jensen RL. Modeling Meningiomas: Optimizing Treatment Approach. Neurosurg Clin N Am 2023; 34:479-492. [PMID: 37210136 DOI: 10.1016/j.nec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Preclinical meningioma models offer a setting to test molecular mechanisms of tumor development and targeted treatment options but historically have been challenging to generate. Few spontaneous tumor models in rodents have been established, but cell culture and in vivo rodent models have emerged along with artificial intelligence, radiomics, and neural networks to differentiate the clinical heterogeneity of meningiomas. We reviewed 127 studies using PRISMA guideline methodology, including laboratory and animal studies, that addressed preclinical modeling. Our evaluation identified that meningioma preclinical models provide valuable molecular insight into disease progression and effective chemotherapeutic and radiation approaches for specific tumor types.
Collapse
Affiliation(s)
- Majid Khan
- Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Chadwin Hanna
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Matthew Findlay
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA
| |
Collapse
|
3
|
Hwang SN. Editorial for “Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Scott N. Hwang
- Department of Radiology PennState Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| |
Collapse
|
4
|
Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization. Cancers (Basel) 2022; 14:cancers14112605. [PMID: 35681585 PMCID: PMC9179263 DOI: 10.3390/cancers14112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Meningiomas are typically benign, common extra-axial tumors of the central nervous system. Routine clinical assessment by radiologists presents some limitations regarding long-term patient outcome prediction and risk stratification. Given the exponential growth of interest in radiomics and artificial intelligence in medical imaging, numerous studies have evaluated the potential of these tools in the setting of meningioma imaging. These were aimed at the development of reliable and reproducible models based on quantitative data. Although several limitations have yet to be overcome for their routine use in clinical practice, their innovative potential is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging. Abstract Meningiomas are the most common extra-axial tumors of the central nervous system (CNS). Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists, typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to outcome prediction and risk stratification. The acquisition of this information could help the referring clinician in the decision-making process and selection of the appropriate treatment. Following the increased attention and potential of radiomics and artificial intelligence in the healthcare domain, including oncological imaging, researchers have investigated their use over the years to overcome the current limitations of imaging. The aim of these new tools is the replacement of subjective and, therefore, potentially variable medical image analysis by more objective quantitative data, using computational algorithms. Although radiomics has not yet fully entered clinical practice, its potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging.
Collapse
|
5
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
6
|
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021; 63:1293-1304. [PMID: 33649882 PMCID: PMC8295153 DOI: 10.1007/s00234-021-02668-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-operative brain MRI. Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02. Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodological quality are required prior to their introduction in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02668-0.
Collapse
|