1
|
Tseng HW, Karellas A, Vedantham S. Cone-beam breast CT using an offset detector: effect of detector offset and image reconstruction algorithm. Phys Med Biol 2022; 67. [PMID: 35316793 PMCID: PMC9045275 DOI: 10.1088/1361-6560/ac5fe1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Objective.A dedicated cone-beam breast computed tomography (BCT) using a high-resolution, low-noise detector operating in offset-detector geometry has been developed. This study investigates the effects of varying detector offsets and image reconstruction algorithms to determine the appropriate combination of detector offset and reconstruction algorithm.Approach.Projection datasets (300 projections in 360°) of 30 breasts containing calcified lesions that were acquired using a prototype cone-beam BCT system comprising a 40 × 30 cm flat-panel detector with 1024 × 768 detector pixels were reconstructed using Feldkamp-Davis-Kress (FDK) algorithm and served as the reference. The projection datasets were retrospectively truncated to emulate cone-beam datasets with sinograms of 768×768 and 640×768 detector pixels, corresponding to 5 cm and 7.5 cm lateral offsets, respectively. These datasets were reconstructed using the FDK algorithm with appropriate weights and an ASD-POCS-based Fast, total variation-Regularized, Iterative, Statistical reconstruction Technique (FRIST), resulting in a total of 4 offset-detector reconstructions (2 detector offsets × 2 reconstruction methods). Signal difference-to-noise ratio (SDNR), variance, and full-width at half-maximum (FWHM) of calcifications in two orthogonal directions were determined from all reconstructions. All quantitative measurements were performed on images in units of linear attenuation coefficient (1/cm).Results.The FWHM of calcifications did not differ (P > 0.262) among reconstruction algorithms and detector formats, implying comparable spatial resolution. For a chosen detector offset, the FRIST algorithm outperformed FDK in terms of variance and SDNR (P < 0.0001). For a given reconstruction method, the 5 cm offset provided better results.Significance.This study indicates the feasibility of using the compressed sensing-based, FRIST algorithm to reconstruct sinograms from offset-detectors. Among the reconstruction methods and detector offsets studied, FRIST reconstructions corresponding to a 30 cm × 30 cm with 5 cm lateral offset, achieved the best performance. A clinical prototype using such an offset geometry has been developed and installed for clinical trials.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America.,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Ghani MU, Omoumi FH, Wu X, Fajardo LL, Zheng B, Liu H. Evaluation and comparison of a CdTe based photon counting detector with an energy integrating detector for X-ray phase sensitive imaging of breast cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:207-219. [PMID: 34957945 DOI: 10.3233/xst-211028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE To compare imaging performance of a cadmium telluride (CdTe) based photon counting detector (PCD) with a CMOS based energy integrating detector (EID) for potential phase sensitive imaging of breast cancer. METHODS A high energy inline phase sensitive imaging prototype consisting of a microfocus X-ray source with geometric magnification of 2 was employed. The pixel pitch of the PCD was 55μm, while 50μm for EID. The spatial resolution was quantitatively and qualitatively assessed through modulation transfer function (MTF) and bar pattern images. The edge enhancement visibility was assessed by measuring edge enhancement index (EEI) using the acrylic edge acquired images. A contrast detail (CD) phantom was utilized to compare detectability of simulated tumors, while an American College of Radiology (ACR) accredited phantom for mammography was used to compare detection of simulated calcification clusters. A custom-built phantom was employed to compare detection of fibrous structures. The PCD images were acquired at equal, and 30% less mean glandular dose (MGD) levels as of EID images. Observer studies along with contrast to noise ratio (CNR) and signal to noise ratio (SNR) analyses were performed for comparison of two detection systems. RESULTS MTF curves and bar pattern images revealed an improvement of about 40% in the cutoff resolution with the PCD. The excellent spatial resolution offered by PCD system complemented superior detection of the diffraction fringes at boundaries of the acrylic edge and resulted in an EEI value of 3.64 as compared to 1.44 produced with EID image. At equal MGD levels (standard dose), observer studies along with CNR and SNR analyses revealed a substantial improvement of PCD acquired images in detection of simulated tumors, calcification clusters, and fibrous structures. At 30% less MGD, PCD images preserved image quality to yield equivalent (slightly better) detection as compared to the standard dose EID images. CONCLUSION CdTe-based PCDs are technically feasible to image breast abnormalities (low/high contrast structures) at low radiation dose levels using the high energy inline phase sensitive imaging technique.
Collapse
Affiliation(s)
- Muhammad U Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Farid H Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Xizeng Wu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurie L Fajardo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bin Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Hong Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
3
|
Ghazi P, Youssefian S, Ghazi T. A novel hardware duo of beam modulation and shielding to reduce scatter acquisition and dose in cone-beam breast CT. Med Phys 2021; 49:169-185. [PMID: 34825715 DOI: 10.1002/mp.15374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In cone-beam breast CT, scattered photons form a large portion of the acquired signal, adversely impacting image quality throughout the frequency response of the imaging system. Prior simulation studies provided proof of concept for utilization of a hardware solution to prevent scatter acquisition. Here, we report the design, implementation, and characterization of an auxiliary apparatus of fluence modulation and scatter shielding that does indeed lead to projections with a reduced level of scatter. METHODS An apparatus was designed for permanent installation within an existing cone-beam CT system. The apparatus is composed of two primary assemblies: a "Fluence Modulator" (FM) and a "Scatter Shield" (SS). The design of the assemblies enables them to operate in synchrony during image acquisition, converting the sourced x-rays into a moving narrow beam. During a projection, this narrow beam sweeps the entire fan angle coverage of the imaging system. As the two assemblies are contingent on one another, their joint implementation is described in the singular as apparatus FM-SS. The FM and the SS assemblies are each comprised a metal housing, a sensory system, and a robotic system. A controller unit handles their relative movements. A series of comparative studies were conducted to evaluate the performance of a cone-beam CT system in two "modes" of operation: with and without FM-SS installed, and to compare the results of physical implementation with those previously simulated. The dynamic range requirements of the utilized detector in the cone-beam CT imaging system were first characterized, independent of the mode of operation. We then characterized and compared the spatial resolution of the imaging system with, and without, FM-SS. A physical breast phantom, representative of an average size breast, was developed and imaged. Actual differences in signal level obtained with, versus without, FM-SS were then compared to the expected level gains based on previously reported simulations. Following these initial assessments, the scatter acquisition in each projection in both modes of operation was investigated. Finally, as an initial study of the impact of FM-SS on radiation dose in an average size breast, a series of Monte Carlo simulations were coupled with physical measurements of air kerma, with and without FM-SS. RESULTS With implementation of FM-SS, the detector's required dynamic range was reduced by a factor of 5.5. Substantial reduction in the acquisition of the scattered rays, by a factor of 5.1 was achieved. With the implementation of FM-SS, deposited dose was reduced by 27% in the studied breast. CONCLUSIONS The disclosed implementation of FM-SS, within a cone-beam breast CT system, results in reduction of scatter-components in acquired projections, reduction of dose deposit to the breast, and relaxation of requirements for the detector's dynamic range. Controlling or correcting for patient motion occurring during image acquisition remains an open problem to be solved prior to practical clinical usage of FM-SS cone-beam breast CT.
Collapse
|
4
|
Sanctorum JG, Van Wassenbergh S, Nguyen V, De Beenhouwer J, Sijbers J, Dirckx JJJ. Extended imaging volume in cone-beam x-ray tomography using the weighted simultaneous iterative reconstruction technique. Phys Med Biol 2021; 66. [PMID: 34289457 DOI: 10.1088/1361-6560/ac16bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
An issue in computerized x-ray tomography is the limited size of available detectors relative to objects of interest. A solution was provided in the past two decades by positioning the detector in a lateral offset position, increasing the effective field of view (FOV) and thus the diameter of the reconstructed volume. However, this introduced artifacts in the obtained reconstructions, caused by projection truncation and data redundancy. These issues can be addressed by incorporating an additional data weighting step in the reconstruction algorithms, known as redundancy weighting. In this work, we present an implementation of redundancy weighting in the widely-used simultaneous iterative reconstruction technique (SIRT), yielding the weighted SIRT (W-SIRT) method. The new technique is validated using geometric phantoms and a rabbit specimen, by performing both simulation studies as well as physical experiments. The experiments are carried out in a highly flexible stereoscopic x-ray system equipped with x-ray image intensifiers (XRIIs). The simulations showed that higher values of contrast-to-noise ratio could be obtained using the W-SIRT approach as compared to a weighted implementation of the simultaneous algebraic reconstruction technique (SART). The convergence rate of the W-SIRT was accelerated by including a relaxation parameter in the W-SIRT algorithm, creating the aW-SIRT algorithm. This allowed to obtain the same results as the W-SIRT algorithm, but at half the number of iterations, yielding a much shorter computation time. The aW-SIRT algorithm has proven to perform well for both large as well as small regions of overlap, outperforming the pre-convolutional Feldkamp-David-Kress algorithm for small overlap regions (or large detector offsets). The experiments confirmed the results of the simulations. Using the aW-SIRT algorithm, the effective FOV was increased by >75%, only limited by experimental constraints. Although an XRII is used in this work, the method readily applies to flat-panel detectors as well.
Collapse
Affiliation(s)
- Joaquim G Sanctorum
- Laboratory of Biophysics and Biomedical Physics (BIMEF), University of Antwerp, Antwerp, Belgium
| | - Sam Van Wassenbergh
- Laboratory of Functional Morphology (FunMorph), University of Antwerp, Antwerp, Belgium
| | - Van Nguyen
- Imec-Vision lab, University of Antwerp, Antwerp, Belgium
| | | | - Jan Sijbers
- Imec-Vision lab, University of Antwerp, Antwerp, Belgium
| | - Joris J J Dirckx
- Laboratory of Biophysics and Biomedical Physics (BIMEF), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Dedicated breast CT: state of the art-Part I. Historical evolution and technical aspects. Eur Radiol 2021; 32:1579-1589. [PMID: 34342694 DOI: 10.1007/s00330-021-08179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Dedicated breast CT is an emerging 3D isotropic imaging technology for breast, which overcomes the limitations of 2D compression mammography and limited angle tomosynthesis while providing some of the advantages of magnetic resonance imaging. This first installment in a 2-part review describes the evolution of dedicated breast CT beginning with a historical perspective and progressing to the present day. Moreover, it provides an overview of state-of-the-art technology. Particular emphasis is placed on technical limitations in scan protocol, radiation dose, breast coverage, patient comfort, and image artifact. Proposed methods of how to address these technical challenges are also discussed. KEY POINTS: • Advantages of breast CT include no tissue overlap, improved patient comfort, rapid acquisition, and concurrent assessment of microcalcifications and contrast enhancement. • Current clinical and prototype dedicated breast CT systems differ in acquisition modes, imaging techniques, and detector types. • There are still details to be decided regarding breast CT techniques, such as scan protocol, radiation dose, breast coverage, patient comfort, and image artifact.
Collapse
|
6
|
Brombal L, Arana Peña LM, Arfelli F, Longo R, Brun F, Contillo A, Di Lillo F, Tromba G, Di Trapani V, Donato S, Menk RH, Rigon L. Motion artifacts assessment and correction using optical tracking in synchrotron radiation breast CT. Med Phys 2021; 48:5343-5355. [PMID: 34252212 PMCID: PMC9291820 DOI: 10.1002/mp.15084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The SYRMA‐3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. Methods In this study, patients’ movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. Results CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. Conclusions Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.
Collapse
Affiliation(s)
- Luca Brombal
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Lucia Mariel Arana Peña
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Francesco Brun
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | | | | | - Vittorio Di Trapani
- Department of Physical sciences, Earth and environment, University of Siena, Siena, Italy.,Division of Pisa, Istituto Nazionale di Fisica Nucleare, Pisa, Italy
| | - Sandro Donato
- Department of Physics, University of Calabria, Arcavacata di Rende, Cosenza, Italy.,Division of Frascati, Istituto Nazionale di Fisca Nucleare, Frascati, Rome, Italy
| | - Ralf Hendrik Menk
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Luigi Rigon
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| |
Collapse
|
7
|
Tseng HW, Karellas A, Vedantham S. Radiation dosimetry of a clinical prototype dedicated cone-beam breast CT system with offset detector. Med Phys 2021; 48:1079-1088. [PMID: 33501686 DOI: 10.1002/mp.14688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( DgN CT ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations. MATERIALS AND METHODS The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( f g = 0.01 , 0.15 , 0.5 , 1 ) , chest wall diameters ( d = 8 , 10 , 14 , 18 , 20 cm), and chest wall to nipple length ( l = 0.75 d ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the DgN CT . Three geometries were considered - 40 × 30 -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, 30 × 30 -cm detector with 5 cm offset, and a 30 × 30 -cm detector with 10 cm offset. RESULTS For 5 cm lateral offset, the DgN CT ranged 0.177 - 0.574 mGy/mGy and reduction in DgN CT with respect to reference geometry was observed only for 18 cm ( 6.4 % ± 0.23 % ) and 20 cm ( 9.6 % ± 0.22 % ) diameter breasts. For the 10 cm lateral offset, the DgN CT ranged 0.221 - 0.581 mGy/mGy and reduction in DgN CT was observed for all breast diameters. The reduction in DgN CT was 1.4 % ± 0.48 % , 7.1 % ± 0.13 % , 17.5 % ± 0.19 % , 25.1 % ± 0.15 % , and 27.7 % ± 0.08 % for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in DgN CT with offset-detector geometries was not dependent on f g . Numerical fits of DgN CT d , l , f g were generated for each geometry. CONCLUSION The DgN CT and the numerical fit, D g N CT d , l , f g would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Zhang L. Total variation with modified group sparsity for CT reconstruction under low SNR. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:645-662. [PMID: 33935129 DOI: 10.3233/xst-200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Since the stair artifacts may affect non-destructive testing (NDT) and diagnosis in the later stage, an applicable model is desperately needed, which can deal with the stair artifacts and preserve the edges. However, the classical total variation (TV) algorithm only considers the sparsity of the gradient transformed image. The objective of this study is to introduce and test a new method based on group sparsity to address the low signal-to-noise ratio (SNR) problem. METHODS This study proposes a weighted total variation with overlapping group sparsity model. This model combines the Gaussian kernel and overlapping group sparsity into TV model denoted as GOGS-TV, which considers the structure sparsity of the image to be reconstructed to deal with the stair artifacts. On one hand, TV is the accepted commercial algorithm, and it can work well in many situations. On the other hand, the Gaussian kernel can associate the points around each pixel. Quantitative assessments are implemented to verify this merit. RESULTS Numerical simulations are performed to validate the presented method, compared with the classical simultaneous algebraic reconstruction technique (SART) and the state-of-the-art TV algorithm. It confirms the significantly improved SNR of the reconstruction images both in suppressing the noise and preserving the edges using new GOGS-TV model. CONCLUSIONS The proposed GOGS-TV model demonstrates its advantages to reduce stair artifacts especially in low SNR reconstruction because this new model considers both the sparsity of the gradient image and the structured sparsity. Meanwhile, the Gaussian kernel is utilized as a weighted factor that can be adapted to the global distribution.
Collapse
Affiliation(s)
- Lingli Zhang
- Chongqing Key Laboratory of Complex Data Analysis & Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Group & Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing, China
- Key Lab for OCME, School of Mathematical Sciences, Chongqing Normal University, Chongqing, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Rezaeijo SM, Ghorvei M, Mofid B. Predicting breast cancer response to neoadjuvant chemotherapy using ensemble deep transfer learning based on CT images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:835-850. [PMID: 34219704 DOI: 10.3233/xst-210910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To develop an ensemble a deep transfer learning model of CT images for predicting pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). METHODS The data were obtained from the public dataset 'QIN-Breast' from The Cancer Imaging Archive (TCIA). CT images were gathered before and after the first cycle of NAC. CT images of 121 breast cancer patients were used to train and test the model. Among these patients, 58 achieved a pCR and 63 showed a non-pCR based pathology examination of surgical results after NAC. The dataset was split into training and testing subsets with a ratio of 7:3. In addition, the number of training samples in the dataset was increased from 656 to 1,968 by performing an image augmentation method. Two deep transfer learning models namely, DenseNet201 and ResNet152V2, and the ensemble model with a concatenation of two models, were trained and tested using CT images. RESULTS The ensemble model obtained the highest accuracy of 100% on the testing dataset. Furthermore, we received the best performance of 100% in recall, precision and f1-score value for the ensemble model. This supports the fact that the ensemble model results in better-generalized model and leads to efficient framework. Although a 0.004 and 0.003 difference were seen between the AUC of two base models (DenseNet201 and ResNet152V2) and the proposed ensemble, this increase in the model quality is critical in medical research. T-SNE revealed that in the proposed ensemble, no points were clustered into the wrong class. These results expose the strong performance of the proposed ensemble. CONCLUSION The study concluded that the ensemble model can increase the ability to predict breast cancer response to first-cycle NAC than two DenseNet201 and ResNet152V2 models.
Collapse
Affiliation(s)
- Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadreza Ghorvei
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mofid
- Department of Radiation Oncology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Fu Z, Tseng HW, Vedantham S, Karellas A, Bilgin A. A residual dense network assisted sparse view reconstruction for breast computed tomography. Sci Rep 2020; 10:21111. [PMID: 33273541 PMCID: PMC7713379 DOI: 10.1038/s41598-020-77923-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.
Collapse
Affiliation(s)
- Zhiyang Fu
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.,Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Hsin Wu Tseng
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Srinivasan Vedantham
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Andrew Karellas
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Ali Bilgin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA. .,Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA. .,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|