1
|
Soni, Walke V, Joshi D, Sharma T, Shrivastava A, Agrawal A. The spectrum of microvascular patterns in adult diffuse glioma and their correlation with tumor grade. J Pathol Transl Med 2024; 58:127-133. [PMID: 38766738 PMCID: PMC11106609 DOI: 10.4132/jptm.2024.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Primary brain tumors constitute the leading cause of cancer-related mortality. Among them, adult diffuse gliomas are the most common type, affecting the cerebral hemispheres and displaying a diffuse infiltrative pattern of growth in the surrounding neuropil that accounts for about 80% of all primary intracranial tumors. The hallmark feature of gliomas is blood vessel proliferation, which plays an important role in tumor growth, tumor biological behavior, and disease outcome. High-grade gliomas exhibit increased vascularity, the worst prognosis, and lower survival rates. Several angiogenic receptors and factors are upregulated in glioblastomas and stimulate angiogenesis signaling pathways by means of activating oncogenes and/or down-regulating tumor-suppressor genes. Existing literature has emphasized that different microvascular patterns (MVPs) are displayed in different subtypes of adult diffuse gliomas. METHODS We examined the distribution and biological characteristics of different MVPs in 50 patients with adult diffuse gliomas. Haematoxylin and eosin staining results, along with periodic acid-Schiff and CD34 dual-stained sections, were examined to assess the vascular patterns and correlate with different grades of diffuse glioma. RESULTS The present observational study on adult diffuse glioma evaluated tumor grade and MVPs. Microvascular sprouting was the most common pattern, while a bizarre pattern (type 2) was associated with the presence of a high-grade glioma. Vascular mimicry was observed in 6% of cases, all of which were grade 4 gliomas. CONCLUSIONS This study supplements the role of neo-angiogenesis and aberrant vasculature patterns in the grading and progression of adult diffuse gliomas, which can be future targets for planning treatment strategies.
Collapse
Affiliation(s)
- Soni
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Vaishali Walke
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Deepti Joshi
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Tanya Sharma
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Adesh Shrivastava
- Departments of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| | - Amit Agrawal
- Departments of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
2
|
Bartusik-Aebisher D, Żołyniak A, Barnaś E, Machorowska-Pieniążek A, Oleś P, Kawczyk-Krupka A, Aebisher D. The Use of Photodynamic Therapy in the Treatment of Brain Tumors-A Review of the Literature. Molecules 2022; 27:molecules27206847. [PMID: 36296440 PMCID: PMC9607067 DOI: 10.3390/molecules27206847] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neoplastic disease of the brain is still a challenge for modern medicine. Therefore, advanced methodologies are needed that can rationally and successfully contribute to the early diagnosis of primary and metastatic tumors growing within the brain. Photodynamic therapy (PDT) seems to be a valuable method of treatment for precancerous and cancerous lesions including brain tumors. The main advantage of PDT is its high efficiency, minimal invasiveness and no serious side effects, compared with chemotherapy and radiotherapy. This review was conducted through a comprehensive search of articles, scientific information databases and the websites of organizations dealing with cancer treatment. Key points from clinical trials conducted by other researchers are also discussed. The common databases such as PubMed, Google Scholar, EBSCO, Scopus, and Elsevier were used. Articles in the English language of reliable credibility were mainly analyzed. The type of publications considered included clinical and preclinical studies, systematic reviews, and case reports. Based on these collected materials, we see that scientists have already demonstrated the potential of PDT application in the field of brain tumors. Therefore, in this review, the treatment of neoplasm of the Central Nervous System (CNS) and the most common tumor, glioblastoma multiforme (GBM), have been explored. In addition, an overview of the general principles of PDT, as well as the mechanism of action of the therapy as a therapeutic platform for brain tumors, is described. The research was carried out in June 2022.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Aleksandra Żołyniak
- Students Biochemistry Science Club, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Edyta Barnaś
- Institute of Health Sciences, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia, 15 Poniatowskiego Street, 40-055 Katowice, Poland
| | - Piotr Oleś
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Morales-Martínez M, Vega MI. Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 2022; 23:ijms23169091. [PMID: 36012357 PMCID: PMC9408913 DOI: 10.3390/ijms23169091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: or
| |
Collapse
|
4
|
Galijasevic M, Steiger R, Mangesius S, Mangesius J, Kerschbaumer J, Freyschlag CF, Gruber N, Janjic T, Gizewski ER, Grams AE. Magnetic Resonance Spectroscopy in Diagnosis and Follow-Up of Gliomas: State-of-the-Art. Cancers (Basel) 2022; 14:3197. [PMID: 35804969 PMCID: PMC9264890 DOI: 10.3390/cancers14133197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Preoperative grade prediction is important in diagnostics of glioma. Even more important can be follow-up after chemotherapy and radiotherapy of high grade gliomas. In this review we provide an overview of MR-spectroscopy (MRS), technical aspects, and different clinical scenarios in the diagnostics and follow-up of gliomas in pediatric and adult populations. Furthermore, we provide a recap of the current research utility and possible future strategies regarding proton- and phosphorous-MRS in glioma research.
Collapse
Affiliation(s)
- Malik Galijasevic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.K.); (C.F.F.)
| | | | - Nadja Gruber
- VASCage-Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria;
- Department of Applied Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Effects of Long-Term Temozolomide Treatment on Glioblastoma and Astrocytoma WHO Grade 4 Stem-Like Cells. Int J Mol Sci 2022; 23:ijms23095238. [PMID: 35563629 PMCID: PMC9100657 DOI: 10.3390/ijms23095238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.
Collapse
|
6
|
Pladevall-Morera D, Castejón-Griñán M, Aguilera P, Gaardahl K, Ingham A, Brosnan-Cashman JA, Meeker AK, Lopez-Contreras AJ. ATRX-Deficient High-Grade Glioma Cells Exhibit Increased Sensitivity to RTK and PDGFR Inhibitors. Cancers (Basel) 2022; 14:cancers14071790. [PMID: 35406561 PMCID: PMC8997088 DOI: 10.3390/cancers14071790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
High-grade glioma, including anaplastic astrocytoma and glioblastoma (GBM) patients, have a poor prognosis due to the lack of effective treatments. Therefore, the development of new therapeutic strategies to treat these gliomas is urgently required. Given that high-grade gliomas frequently harbor mutations in the SNF2 family chromatin remodeler ATRX, we performed a screen to identify FDA-approved drugs that are toxic to ATRX-deficient cells. Our findings reveal that multi-targeted receptor tyrosine kinase (RTK) and platelet-derived growth factor receptor (PDGFR) inhibitors cause higher cellular toxicity in high-grade glioma ATRX-deficient cells. Furthermore, we demonstrate that a combinatorial treatment of RTKi with temozolomide (TMZ)-the current standard of care treatment for GBM patients-causes pronounced toxicity in ATRX-deficient high-grade glioma cells. Our findings suggest that combinatorial treatments with TMZ and RTKi may increase the therapeutic window of opportunity in patients who suffer high-grade gliomas with ATRX mutations. Thus, we recommend incorporating the ATRX status into the analyses of clinical trials with RTKi and PDGFRi.
Collapse
Affiliation(s)
- David Pladevall-Morera
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - María Castejón-Griñán
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Paula Aguilera
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Karina Gaardahl
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - Andreas Ingham
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - Jacqueline A. Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.A.B.-C.); (A.K.M.)
| | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.A.B.-C.); (A.K.M.)
| | - Andres J. Lopez-Contreras
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
7
|
Ibrahim Abdul Hakeem AH, Khaled RST, Sherif Ismail M. Expression of Anaplastic Lymphoma Kinase in Astrocytic Tumors (Histopathological and Immunohistochemical Study). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Astrocytic tumors are the most common primary brain tumors. Glioblastoma is the most common astrocytic tumor representing the highest World Health Organization (WHO) grade (WHO grade IV) with poor prognosis and short survival time. Anaplastic lymphoma kinase (ALK) has a role in embryonic central nervous system development. ALK receptor is thought to contribute to nervous system function, repair, and metabolic homeostasis and is expressed in high-grade tumors like anaplastic large cell lymphoma that makes it a potential target for therapeutic intervention.
AIM: This work aimed to examine the immunohistochemical expression of ALK in astrocytic tumors and its correlation with age, sex, clinical presentation, location, laterality, recurrence, and WHO grade to implicate possible therapeutic potential.
METHODS: This retrospective study was conducted on sixty cases of archived, formalin-fixed, paraffin-embedded tissue blocks that included different subtypes and grades of astrocytic tumors. Immunohistochemistry using ALK monoclonal antibody was performed using a standard avidin-biotin-peroxidase system.
RESULTS: Of the sixty cases, 57 (95%) cases were negative for ALK, while three (5%) cases are positive for ALK; all showed the strong intensity of expression. No statistically significant association was found between ALK expression and astrocytic tumors in addition to other clinical variables of the studied tumors.
CONCLUSIONS: Most cases of astrocytic tumors showed negative ALK expression apart from three positive cases seen in higher WHO grades, especially gliosarcoma. The high number of negative cases for ALK in our study group suggests that ALK expression is not associated with a prognostic significance toward astrocytic tumors whatever its grade.
Collapse
|
8
|
Jokonya L, Musara A, Esene I, Mduluza-Jokonya TL, Makunike-Mutasa R, Rothemeyer S, Ntenge Kalangu KK, Mduluza T, Naicker T. Landscape, Presentation, and Characteristics of Brain Gliomas in Zimbabwe. Asian J Neurosurg 2021; 16:294-299. [PMID: 34268154 PMCID: PMC8244682 DOI: 10.4103/ajns.ajns_404_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: Gliomas are tumors of the supporting cells of the central nervous system. They have great heterogeneity in their clinical and pathological features as well as prognosis. There is paucity of glioma epidemiology data in Zimbabwe. We carried out a study to determine the landscape, presentation, and characteristics of brain gliomas in Zimbabwe. Materials and Methods: A prospective cross-sectional study was conducted in Zimbabwe over a 2 years period to determine descriptive epidemiological data with regards to demographic distribution, presentation, and tumor characteristics. Consecutive patients from across the country with brain gliomas were recruited in the study. Results: A total of 112 brain tumors were diagnosed histologically. Of these 43.8% (n = 49) were gliomas and hence recruited in the study. The mean age of study participants was 40.3 years (standard deviation = 23.1 years), range 3–83 years. Male to female ratio (M:F) was 1:1. The study population consisted of 14% caucasians (n = 7), 83.7% black (n = 41), and 2% (n = 1) were of mixed race. Eighty-six percent (n = 42) of participants were from urban areas. The most common presenting complaint was headache in 87.8% (n = 43). The majority (61.2%) presented with a Karnofsky score ≥70%. Astrocytomas were the most common gliomas constituting 57.1% (n = 28), followed by ependymomas and oligodendrogliomas being 8.1% (n = 4) each. There was no statistical difference in the hemisphere of the brain involved (P = 0.475). Eight percent of the population were HIV positive (n = 4). Age above 60 years has an adjusted odds ratio of 13 for presenting with high-grade tumors. Conclusion: There is a disproportionately high number of gliomas among Caucasians, urban dwellers, and those gainfully employed. The prevalence of HIV in glioma patients is less than that of the general population.
Collapse
Affiliation(s)
- Luxwell Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| | - Aaron Musara
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ignatius Esene
- Division of Neurosurgery, Faculty of Health Sciences, University of Bamenda, Bamenda, Cameroon
| | - Tariro Lavender Mduluza-Jokonya
- Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| | - Rudo Makunike-Mutasa
- Department of Histopathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Sally Rothemeyer
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | | | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Thajasvarie Naicker
- Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Liu J, Zhang H, Zhang J, Bing Z, Wang Y, Li Q, Yang K. Identification of robust diagnostic and prognostic gene signatures in different grades of gliomas: a retrospective study. PeerJ 2021; 9:e11350. [PMID: 34026352 PMCID: PMC8121073 DOI: 10.7717/peerj.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Background Gliomas are the most common primary tumors of the central nervous system. The complexity and heterogeneity of the tumor makes it difficult to obtain good biomarkers for drug development. In this study, through The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), we analyze the common diagnostic and prognostic moleculer markers in Caucasian and Asian populations, which can be used as drug targets in the future. Methods The RNA-seq data from Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) were analyzed to identify signatures. Based on the signatures, the prognosis index (PI) of every patient was constructed to predict the prognostic risk. Also, gene ontology (GO) functional enrichment analysis and KEGG analysis were conducted to investigate the biological functions of these mRNAs. Glioma patients’ data in the CGGA database were introduced to validate the effectiveness of the signatures among Chinese populations. Excluding the previously reported prognostic markers of gliomas from this study, the expression of HSPA5 and MTPN were examined by qRT-PCR and immunohistochemical assay. Results In total, 20 mRNAs were finally selected to build PI for patients from TCGA, including 16 high-risk genes and four low-risk genes. For Chinese patients, the log-rank test p values of PI were both less than 0.0001 in two independent datasets. And the AUCs were 0.831 and 0.907 for 3 years of two datasets, respectively. Moreover, among these 20 mRNAs, 10 and 15 mRNAs also had a significant predictive effect via univariate COX analysis in CGGA_693 and CGGA_325, respectively. qRT-PCR and Immunohistochemistry assay indicated that HSPA5 and MTPN over-expressed in Glioma samples compared to normal samples. Conclusion The 20-gene signature can forecast the risk of Glioma in TCGA effectively, moreover it can also predict the risks of Chinese patients through validation in the CGGA database. HSPA5 and MTPN are possible biomarkers of gliomas suitable for all populations to improve the prognosis of these patients.
Collapse
Affiliation(s)
- Jieting Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China.,Evidence-based Medicine Center, Lanzhou University, Lanzhou, China
| | - Hongrui Zhang
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingyun Zhang
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhitong Bing
- Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Lanzhou, China
| | - Yingbin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Kehu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Evidence-based Medicine Center, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Lopes DV, de Fraga Dias A, Silva LFL, Scholl JN, Sévigny J, Battastini AMO, Figueiró F. Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth. Purinergic Signal 2021; 17:273-284. [PMID: 33745072 DOI: 10.1007/s11302-021-09775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.
Collapse
Affiliation(s)
- Daniela Vasconcelos Lopes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Neary B, Zhou J, Qiu P. Identifying gene expression patterns associated with drug-specific survival in cancer patients. Sci Rep 2021; 11:5004. [PMID: 33654134 PMCID: PMC7925648 DOI: 10.1038/s41598-021-84211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jie Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
13
|
Seyedmirzaei H, Shobeiri P, Turgut M, Hanaei S, Rezaei N. VEGF levels in patients with glioma: a systematic review and meta-analysis. Rev Neurosci 2020; 32:191-202. [PMID: 33125340 DOI: 10.1515/revneuro-2020-0062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) has a crucial role in the angiogenesis of various tumors, including glioma. As the levels of VEGF would change in patients with glioma, we conducted the current systematic review and meta-analysis to more clearly determine the VEGF level alterations in different grades of glioma. PubMed and Scopus databases were sensitively searched for all the possible keywords addressing glioma and VEGF. Case-control and cohort studies on human subjects, which measured VEGF levels were eligible to be included in the study. Out of a total number of 3,612 studies, 22 studies were included and 12 studies entered the meta-analysis. This review revealed that serum levels of VEGF in glioma patients were 1.56 pg/dL higher compared to healthy controls (P = 0.05). Besides, immunohistochemistry (IHC) measurement of VEGF in surgical biopsies indicated significant difference in these two groups as well (P = 0.02). Yet, there was not a significant difference between patients with low-grade gliomas (World Health Organization (WHO) grades I-II, LGG) and those with high-grade gliomas (WHO grades III-IV, HGG) (P = 0.43). The results of this systematic review and meta-analysis demonstrate that VEGF levels would significantly increase in glioma, and therefore, could be potentially considered as a biomarker for this cancer.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehmet Turgut
- Department of Neurosurgery, Aydın Adnan Menderes University Faculty of Medicine, Efeler, Aydın,Turkey.,Department of Histology and Embryology, Aydın Adnan Menderes University Health Sciences Institute, Efeler, Aydın, Turkey
| | - Sara Hanaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Birkó Z, Nagy B, Klekner Á, Virga J. Novel Molecular Markers in Glioblastoma-Benefits of Liquid Biopsy. Int J Mol Sci 2020; 21:ijms21207522. [PMID: 33053907 PMCID: PMC7589793 DOI: 10.3390/ijms21207522] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is a primary Central Nervous System (CNS) malignancy with poor survival. Treatment options are scarce and despite the extremely heterogeneous nature of the disease, clinicians lack prognostic and predictive markers to characterize patients with different outcomes. Certain immunohistochemistry, FISH, or PCR-based molecular markers, including isocitrate dehydrogenase1/2 (IDH1/2) mutations, epidermal growth factor receptor variant III (EGFRvIII) mutation, vascular endothelial growth factor overexpression (VEGF) overexpression, or (O6-Methylguanine-DNA methyltransferase promoter) MGMT promoter methylation status, are well-described; however, their clinical usefulness and accuracy is limited, and tumor tissue samples are always necessary. Liquid biopsy is a developing field of diagnostics and patient follow up in multiple types of cancer. Fragments of circulating nucleic acids are collected in various forms from different bodily fluids, including serum, urine, or cerebrospinal fluid in order to measure the quality and quantity of these markers. Multiple types of nucleic acids can be analyzed using liquid biopsy. Circulating cell-free DNA, mitochondrial DNA, or the more stable long and small non-coding RNAs, circular RNAs, or microRNAs can be identified and measured by novel PCR and next-generation sequencing-based methods. These markers can be used to detect the previously described alterations in a minimally invasive method. These markers can be used to differentiate patients with poor or better prognosis, or to identify patients who do not respond to therapy. Liquid biopsy can be used to detect recurrent disease, often earlier than using imaging modalities. Liquid biopsy is a rapidly developing field, and similarly to other types of cancer, measuring circulating tumor-derived nucleic acids from biological fluid samples could be the future of differential diagnostics, patient stratification, and follow up in the future in glioblastoma as well.
Collapse
Affiliation(s)
- Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Virga
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
15
|
Yan R, Cui F, Dong L, Liu Y, Chen X, Fan R. Repression of PCGF1 Decreases the Proliferation of Glioblastoma Cells in Association with Inactivation of c-Myc Signaling Pathway. Onco Targets Ther 2020; 13:253-261. [PMID: 32021272 PMCID: PMC6957096 DOI: 10.2147/ott.s234517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary brain tumor with a poor therapeutic outcome. Polycomb group factor 1 (PCGF1), a member of the PcG (Polycomb group) family, is highly expressed in the developing nervous system of mice. However, the function and the mechanism of PCGF1 in GBM proliferation still remain unclear. Methods Knockdown of PCGF1 was performed in U87 GBM cell by shRNA strategy via lentivirus vector. MTT assay, colony formation assays, and flow cytometry were used to measure the properties of cell proliferation and cell cycle distribution, respectively. GeneChip analysis was performed to identify the downstream effector molecules. Rescue assay was constructed to verify the screening results. Results We first found that knockdown of PCGF1 led to the inhibition of U87 cells proliferation and decreased colony formation ability. The data from GeneChip expression profiling and Ingenuity Pathway Analysis (IPA) indicated that many of the altered gene cells are associated with the cell proliferation control pathways. We have further confirmed the suppression of AKT/GSK3β/c-Myc/cyclinD1 expressions by Western blotting analysis. The over-expression of c-Myc could partly restore the attenuated proliferation ability caused by knockdown of PCGF1. Conclusion All the above evidences suggested that PCGF1 might be closely associated with tumorigenesis and progression of glioblastoma (GBM), in which process the oncoprotein c-Myc may participate. PCGF1 could thus be a potential therapeutic target for the treatment of glioblastoma (GBM).
Collapse
Affiliation(s)
- Rui Yan
- Department of Thoracic Surgery, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China
| | - Fengmei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Lijin Dong
- Editorial Department, Logistic University of Chinese People's Armed Police Force, Tianjin 300309, People's Republic of China
| | - Yong Liu
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Rong Fan
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| |
Collapse
|
16
|
Feldheim J, Kessler AF, Schmitt D, Wilczek L, Linsenmann T, Dahlmann M, Monoranu CM, Ernestus RI, Hagemann C, Löhr M. Expression of activating transcription factor 5 (ATF5) is increased in astrocytomas of different WHO grades and correlates with survival of glioblastoma patients. Onco Targets Ther 2018; 11:8673-8684. [PMID: 30584325 PMCID: PMC6287669 DOI: 10.2147/ott.s176549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background ATF5 suppresses differentiation of neuroprogenitor cells and is overexpressed in glioblastoma (GBM). A reduction of its expression leads to apoptotic GBM cell death. Data on ATF5 expression in astrocytoma WHO grade II (low-grade astrocytoma [LGA]) are scarce and lacking on recurrent GBM. Patients and methods ATF5 mRNA was extracted from frozen samples of patients’ GBM (n=79), LGA (n=40), and normal brain (NB, n=10), quantified by duplex qPCR and correlated with retrospectively collected clinical data. ATF5 protein expression was evaluated by measuring staining intensity on immunohistochemistry. Results ATF5 mRNA was overexpressed in LGA (sevenfold, P<0.001) and GBM (tenfold, P<0.001) compared to NB, which was confirmed on protein level. Although ATF5 mRNA expression in GBM showed a considerable fluctuation range, groups of varying biological behavior, that is, local/multifocal growth or primary tumor/relapse and the tumor localization at diagnosis, were not significantly different. ATF5 mRNA correlated with the patients’ age (r=0.339, P=0.028) and inversely with Ki67-staining (r=−0.421, P=0.007). GBM patients were allocated to a low and a high ATF5 expression group by the median ATF5 overexpression compared to NB. Kaplan–Meier analysis and Cox regression indicated that ATF5 mRNA expression significantly correlated with short-term survival (t,12 months, median survival 18 vs 13 months, P=0.022, HR 2.827) and progression-free survival (PFS) (12 vs 6 months, P=0.024). This advantage vanished after 24 months (P=0.084). Conclusion ATF5 mRNA expression could be identified as an additional, though not independent factor correlating with overall survival and PFS. Since its inhibition might lead to the selective death of glioma cells, it might serve as a potential ubiquitous therapeutic target in astrocytic tumors.
Collapse
Affiliation(s)
- Jonas Feldheim
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Almuth F Kessler
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Dominik Schmitt
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Lara Wilczek
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Thomas Linsenmann
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Carsten Hagemann
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| | - Mario Löhr
- Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Würzburg, Germany,
| |
Collapse
|
17
|
Nguemgo Kouam P, Rezniczek GA, Kochanneck A, Priesch-Grzeszkowiak B, Hero T, Adamietz IA, Bühler H. Robo1 and vimentin regulate radiation-induced motility of human glioblastoma cells. PLoS One 2018; 13:e0198508. [PMID: 29864155 PMCID: PMC5986140 DOI: 10.1371/journal.pone.0198508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a primary brain tumor with a poor prognosis despite of many treatment regimens. Radiotherapy significantly prolongs patient survival and remains the most common treatment. Slit2 and Robo1 are evolutionarily conserved proteins involved in axon guidance, migration, and branching of neuronal cells. New studies have shown that Slit2 and Robo1 could play important roles in leukocyte chemotaxis and glioblastoma cell migration. Therefore, we investigated whether the Slit2/Robo1 complex has an impact on the motility of glioblastoma cells and whether irradiation with therapeutic doses modulates this effect. Our results indicate that photon irradiation increases the migration of glioblastoma cells in vitro. qPCR and immunoblotting experiments in two different glioblastoma cell lines (U-373 MG and U-87 MG) with different malignancy revealed that both Slit2 and Robo1 are significantly lower expressed in the cell populations with the highest motility and that the expression was reduced after irradiation. Overexpression of Robo1 significantly decreased the motility of glioblastoma cells and inhibited the accelerated migration of wild-type cells after irradiation. Immunoblotting analysis of migration-associated proteins (fascin and focal adhesion kinase) and of the epithelial-mesenchymal-transition-related protein vimentin showed that irradiation affected the migration of glioblastoma cells by increasing vimentin expression, which can be reversed by the overexpression of Slit2 and Robo1. Our findings suggest that Robo1 expression might counteract migration and also radiation-induced migration of glioblastoma cells, a process that might be connected to mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Pascaline Nguemgo Kouam
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Günther A. Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Anja Kochanneck
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Bettina Priesch-Grzeszkowiak
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Thomas Hero
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Irenäus A. Adamietz
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Helmut Bühler
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| |
Collapse
|
18
|
Lotar Cordova Jr. A, Almeida TVR, Silva CMD, Piedade PA, Almeida CM, Bezzera Lima Jr. CG, Dutra C, Ferreira RM, Linhares MN, Denyak V. Evaluation of high-grade astrocytoma recurrence patterns after radiotherapy in the era of temozolomide: A single institution experience. Rep Pract Oncol Radiother 2018; 23:154-160. [PMID: 29760590 PMCID: PMC5948418 DOI: 10.1016/j.rpor.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/02/2017] [Accepted: 02/13/2018] [Indexed: 11/23/2022] Open
Abstract
AIM Evaluating the recurrence patterns of high-grade astrocytomas in patients who were treated with radiotherapy (RT) plus temozolomide (TMZ). BACKGROUND The current literature suggests that reducing the margins added to the CTV does not significantly change the risk of recurrence and overall survival; thus, we decided to analyze our data and to examine the possibility of changing the adopted margins. MATERIALS AND METHODS From February 2008 till September 2013, 55 patients were treated for high-grade astrocytomas, 20 patients who had been confirmed to have recurrence were selected for the present study. Post-operative MRI was superimposed on the planning CT images in order to correlate the anatomical structures with the treatment targets. Recurrences were defined according to the Response Assessment Criteria for Glioblastoma. The mean margins of the PTVinitial and PTVboost were 1.2 cm and 1.4 cm, respectively. The analysis of the percentage of the recurrence volume (Volrec) within the 100% isodose surface was based on the following criteria: (I) Central: >95% of the Volrec; (II) In-field: 81-95% of the Volrec; (III) Marginal: 20-80% of the Volrec; and (IV) Outside: <20% of the Volrec. RESULTS Of the 20 patients, 13 presented with central recurrences, 3 with in-field recurrences, 2 with marginal recurrences and 2 with outside recurrences. Therefore, the lower Volrec within 100% of the prescribed dose was considered in the classification. CONCLUSIONS Of the selected patients, 80% had ≥81-95% of the Volrec within 100% of the prescribed dose and predominantly had central or in-field recurrences. These results are comparable with those from the literature.
Collapse
Affiliation(s)
- Arno Lotar Cordova Jr.
- Radiotherapy Center São Sebastião, Rua Bocaiúva, 72 – Largo São Sebastião, CEP: 88015-530, Florianópolis, SC, Brazil
| | | | - Cintia Mara da Silva
- Radiotherapy Center São Sebastião, Rua Bocaiúva, 72 – Largo São Sebastião, CEP: 88015-530, Florianópolis, SC, Brazil
| | - Pedro Argolo Piedade
- Radiotherapy Center São Sebastião, Rua Bocaiúva, 72 – Largo São Sebastião, CEP: 88015-530, Florianópolis, SC, Brazil
| | - Cristiane Maria Almeida
- Radiotherapy Center São Sebastião, Rua Bocaiúva, 72 – Largo São Sebastião, CEP: 88015-530, Florianópolis, SC, Brazil
| | | | - Carolina Dutra
- Clinic of Oncology SOMA, Alameda Gov. Heriberto Hulse, 123, CEP: 88015-170, Florianópolis, SC, Brazil
| | - Rafael Martins Ferreira
- Lâmina Diagnostic Medicine, R. Bocaiúva, 2013, Centro, CEP 88015-530, Florianópolis, SC, Brazil
| | - Marcelo Neves Linhares
- University Hospital of Santa Catarina, R. Profa. Maria Flora Pausewang, Trindade, CEP: 88036-800, Florianópolis, SC, Brazil
| | - Valeriy Denyak
- Research Institue & College Pequeno Príncipe, Av. Iguaçu, 333, Rebouças, CEP: 80230-020, Curitiba, PR, Brazil
| |
Collapse
|
19
|
Pham K, Luo D, Siemann DW, Law BK, Reynolds BA, Hothi P, Foltz G, Harrison JK. VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFβR signaling-dependent manner. Cancer Lett 2015; 360:60-7. [PMID: 25676691 DOI: 10.1016/j.canlet.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
Abstract
The failure of standard treatment for patients diagnosed with glioblastoma (GBM) coupled with the highly vascularized nature of this solid tumor has led to the consideration of agents targeting VEGF or VEGFRs, as alternative therapeutic strategies for this disease. Despite modest achievements in survival obtained with such treatments, failure to maintain an enduring survival benefit and more invasive relapsing tumors are evident. Our study suggests a potential mechanism by which anti-VEGF/VEGFR therapies regulate the enhanced invasive phenotype through a pathway that involves TGFβR and CXCR4. VEGFR signaling inhibitors (Cediranib and Vandetanib) elevated the expression of CXCR4 in VEGFR-expressing GBM cell lines and tumors, and enhanced the in vitro migration of these lines toward CXCL12. The combination of VEGFR inhibitor and CXCR4 antagonist provided a greater survival benefit to tumor-bearing animals. The upregulation of CXCR4 by VEGFR inhibitors was dependent on TGFβ/TGFβR, but not HGF/MET, signaling activity, suggesting a mechanism of crosstalk among VEGF/VEGFR, TGFβ/TGFβR, and CXCL12/CXCR4 pathways in the malignant phenotype of recurrent tumors after anti-VEGF/VEGFR therapies. Thus, the combination of VEGFR, CXCR4, and TGFβR inhibitors could provide an alternative strategy to halt GBM progression.
Collapse
Affiliation(s)
- Kien Pham
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Defang Luo
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dietmar W Siemann
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brian K Law
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brent A Reynolds
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Gregory Foltz
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Jeffrey K Harrison
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
Minaya Flores P, Berbis J, Chinot O, Auquier P. Assessing the quality of life among caregivers of patients with gliomas. Neurooncol Pract 2014; 1:191-197. [PMID: 26034632 DOI: 10.1093/nop/npu027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of the study was to analyze the impact of gliomas in caregivers' quality of life (QoL) and to compare this specific population to other oncology caregivers and the normative population in order to find differences and understand which aspects of QoL are more impacted. METHODS The sample was composed of caregivers of patients with gliomas from the Neuro-Oncology Department of Timone University Hospital of Marseilles, France. Control caregivers were selected from different oncology departments and were matched with caregivers of patients with brain cancer on age, sex, and relationship with the patients. We used the specific CareGiver Oncology Quality of Life questionnaire (CarGOQoL) to assess the impact of cancer and its treatment on caregivers' QoL. Caregivers also completed the Short Form 36 (SF36) for comparison with the French normative sample. RESULTS The study sample included 50 caregivers of patients with gliomas, aged 30-77 years, 28% of whom were men. When comparing specific CarGOQoL scores with those of the control caregivers, brain cancer caregivers had significantly lower scores for the burden and leisure time dimensions, with an effect size of 0.4. No significant differences between cases and controls were observed with SF36. CONCLUSION Caregivers of patients with gliomas showed increased burden scores and lower scores for the leisure time dimension. This could be explained by their unique care situation, in which patients become more limited physically and cognitively.
Collapse
Affiliation(s)
- Patricia Minaya Flores
- School of Medicine , Aix-Marseilles University, Marseilles, France (P.M.F., J.B., P.A.); EA3279, Self-perceived Health Assessment Research Unit , Marseilles , France (P.M.F., J.B., P.A.); Timone University Hospital, Department of Neurooncology , Marseilles , France (O.C.)
| | - Julie Berbis
- School of Medicine , Aix-Marseilles University, Marseilles, France (P.M.F., J.B., P.A.); EA3279, Self-perceived Health Assessment Research Unit , Marseilles , France (P.M.F., J.B., P.A.); Timone University Hospital, Department of Neurooncology , Marseilles , France (O.C.)
| | - Olivier Chinot
- School of Medicine , Aix-Marseilles University, Marseilles, France (P.M.F., J.B., P.A.); EA3279, Self-perceived Health Assessment Research Unit , Marseilles , France (P.M.F., J.B., P.A.); Timone University Hospital, Department of Neurooncology , Marseilles , France (O.C.)
| | - Pascal Auquier
- School of Medicine , Aix-Marseilles University, Marseilles, France (P.M.F., J.B., P.A.); EA3279, Self-perceived Health Assessment Research Unit , Marseilles , France (P.M.F., J.B., P.A.); Timone University Hospital, Department of Neurooncology , Marseilles , France (O.C.)
| |
Collapse
|
21
|
Niu H, Wang K, Wang Y. Polymeric immunoglobulin receptor expression is predictive of poor prognosis in glioma patients. Int J Clin Exp Med 2014; 7:2185-2190. [PMID: 25232405 PMCID: PMC4161565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Although there have been recent advances in surgery, radiotherapy, and chemotherapy, the survival of patient with glioma remains poor. Increased expression of polymeric immunoglobulin receptor (pIgR) in tumor tissue has been detected in various cancer forms. However, the clinical relevance of pIgR in glioma remains unclear. The aim of this study was to assess the prognostic value of pIgR in patients with glioma after surgical resection. pIgR expression was evaluated by immunohistochemistry in paraffin-embedded glioma tissues from 146 patients. The relation between pIgR expression and clinicopathologic factors and long-term prognosis in these 146 patients was retrospectively examined. The prognostic significance of negative or positive pIgR exspression in glioma was assessed using Kaplan-Meier survival analysis and log-rank tests. Positive expression of pIgR was statistically significantly associated with poor prognosis of patients with glioma. Our results indicated that pIgR could be a novel predictor for poor prognosis of patients with glioma after surgical resection.
Collapse
Affiliation(s)
- Huanjiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, China
| | - Kun Wang
- Department of Neurosurgery, Hangzhou Xiasha Hospital Affiliated to Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, China
| | - Yirong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, China
| |
Collapse
|
22
|
Klingelhöfer L, Mucha D, Geiger K, Koch R, von Kummer R. Prognostic Value of Conventional Magnetic Resonance Imaging for Adult Patients with Brain Tumors. Clin Neuroradiol 2014; 25:281-9. [PMID: 24828225 DOI: 10.1007/s00062-014-0309-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/21/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is the pivotal diagnostic step in patients with brain tumors, and is performed before histological diagnosis is available. We hypothesized that conventional MRI is as accurate as tumor histology in differentiating malignant from benign clinical course. METHODS Two neuroradiologists blinded to any clinical information evaluated the first diagnostic MRI of 244 brain tumor patients before any treatment, using a self-developed standardized list of image criteria and prospectively determined world health organization (WHO) tumor grade and tumor entity. All patients were examined with at least T1- and T2-weighted spin echo sequences before and after contrast injection on 1 and 1.5-T MRI scanners. Following the patients prospectively for 8-13 years after diagnosis, we were able to use nonsurvival at 5 years as a criterion for malignity and reference for the prognostic accuracy of both MRI and tumor tissue histology. RESULTS The accuracy for predicting nonsurvival at 5 years was 91% (95% confidence interval (CI): 87-94%) for MRI and 92% (95% CI: 88-95%) for histology. The Kaplan-Meier survival curves of patients with benign and malignant brain tumors as diagnosed by MRI or histology differed significantly (p < 0.001). Histology confirmed benignity or malignity in 201 patients (82%, 95% CI: 77-87%). Sources of misdiagnosis were metastases diagnosed as astrocytoma WHO IV, atypical meningiomas, and low-grade astrocytoma with malignant transformation. CONCLUSION MRI appears as accurate as histology in predicting survival at 5 years after diagnosis. Histological diagnosis may be more specific, however, and is needed to assess the tumor's specific biology.
Collapse
Affiliation(s)
- L Klingelhöfer
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland,
| | | | | | | | | |
Collapse
|
23
|
Multiscale design of cell-type-specific pharmacokinetic/pharmacodynamic models for personalized medicine: application to temozolomide in brain tumors. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e112. [PMID: 24785551 PMCID: PMC4017092 DOI: 10.1038/psp.2014.9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 12/31/2022]
Abstract
Optimizing anticancer therapeutics needs to account for variable drug responses in heterogeneous cell populations within the tumor as well as in organs of toxicity. To address cell heterogeneity, we propose a multiscale modeling approach—from in vitro to preclinical and clinical studies—to develop cell-type–specific pharmacokinetic–pharmacodynamic (PK-PD) models. A physiologically based mechanistic modeling approach integrating data from aqueous solutions, U87 glioma cells, mice, and cancer patients was utilized to characterize the brain disposition of temozolomide (TMZ), the cornerstone of chemotherapy against glioblastoma multiforme. The final model represented intracellular normal brain and brain tumor compartments in which TMZ pH-dependent conversion to the DNA-alkylating species leads to the formation of DNA adducts that serve as an entry point for a PD model. This multiscale protocol can be extended to account for TMZ PK-PD in different cell populations, thus providing a critical tool to personalize TMZ-based chemotherapy on a cell-type–specific basis.
Collapse
|
24
|
Abstract
BACKGROUND Glioblastoma is the most common primary brain tumour. It has a poor prognosis despite some advances in treatment that have been achieved over the last ten years. In Slovenia, 50 to 60 glioblastoma patients are diagnosed each year. In order to establish whether the current treatment options have any influence on the survival of the Slovenian glioblastoma patients, their data in the period from the beginning of the year 1997 to the end of the year 2008 have been analysed. PATIENTS AND METHODS All patients treated at the Institute of Oncology Ljubljana from 1997 to 2008 were included in the retrospective study. Demographics, treatment details, and survival time after the diagnosis were collected and statistically analysed for the group as a whole and for subgroups. RESULTS From 1997 to 2008, 527 adult patients were diagnosed with glioblastoma and referred to the Institute of Oncology for further treatment. Their median age was 59 years (from 20 to 85) and all but one had the diagnosis confirmed by a pathologist. Gross total resection was reported by surgeons in 261 (49.5%) patients; good functional status (WHO 0 or 1) after surgery was observed in 336 (63.7%) patients, radiotherapy was performed in 422 (80.1%) patients, in 317 (75.1%) of them with radical intent, and 198 (62.5 %) of those received some form of systemic treatment (usually temozolomide). The median survival of all patients amounted to 9.7 months. There was no difference in median survival of all patients or of all treated patients before or after the chemo-radiotherapy era. However, the overall survival of patients treated with radical intent was significantly better (11.4 months; p < 0.05). A better survival was also noticed in radically treated patients who received additional temozolomide therapy (11.4 vs. 13.1 months; p = 0.014). The longer survival was associated with a younger age and a good performance status as well as with a more extensive tumour resection. In patients treated with radical intent, having a good performance status, and receiving radiotherapy and additional temozolomide therapy, the survival was significantly longer, based on multivariate analysis. CONCLUSIONS We observed a gradual increase in the survival of glioblastoma patients who were treated with radical intent over the last ten years. Good functional surgery, advances in radiotherapy and addition of temozolomide all contributed to this increase. Though the increased survival seems to be more pronounced in certain subgroups, we have still not been able to exactly define them. Further research, especially in tumour biology and genetics is needed.
Collapse
|
25
|
Han X, Jin D, Zheng G, Luo Y, Cai Z. Astrocytoma development following complete multiple myeloma remission in a 49-year-old patient: A case report. Exp Ther Med 2013; 6:509-512. [PMID: 24137217 PMCID: PMC3786880 DOI: 10.3892/etm.2013.1179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM), one of the B-cell non-Hodgkin lymphomas, is a bone marrow-derived, antibody-producing cancer of the plasma cells. In the advanced stages, the cancer cells frequently cause widespread osteolytic bone damage; however, in rare cases, MM also manifests as an intracranial plasmacytoma. In the present study, we describe a case in which a patient, initially treated for MM and with subsequent complete remission, was admitted to hospital with a lesion in the right cerebellar hemisphere and neurological symptoms of a brain tumor. Our initial diagnosis was an MM relapse with the rare occurring intracranial manifestation. However, pathological tests confirmed the diagnosis of a high-grade astrocytoma. In this case report, we describe the characteristics, as well as the treatment issues, diagnoses and clinical developments of this patient.
Collapse
Affiliation(s)
- Xiaoyan Han
- Multiple Myeloma Center, Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Lin W, Li XM, Zhang J, Huang Y, Wang J, Zhang J, Jiang XF, Fei Z. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients. Med Oncol 2013; 30:677. [PMID: 23996240 DOI: 10.1007/s12032-013-0677-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
Abstract
The pathological grading system for human gliomas is usually used to evaluate the prognosis of glioma patients. However, some glioma patients with similar grades have obvious discrepancies in survival. It is therefore necessary to identify some new certain tumor biomarkers that are more suitable for the prognostic assessment of gliomas than the grading system. The 58-kD microspherule protein (MSP58) is an evolutionarily conserved nuclear protein and plays an important role in the regulation of cell proliferation and malignant transformation. However, whether MSP58 can be used as a biomarker to evaluate the malignancy and the prognosis of glioma patients is unknown. In the present study, we performed immunohistochemical analysis to evaluate MSP58 protein expression in 158 specimens of human gliomas and 34 normal control brain tissues. Compared with the control tissues, MSP58 expression was not only significantly higher in the glioma tissues (P < 0.05), but also increased with the increasing pathological grade (P < 0.001). Furthermore, the Kaplan-Meier analysis showed that high expression of MSP58 could predict poor survival in glioma patients (P < 0.001). In the multivariate analysis, high expression of MSP58 was also an independent unfavorable prognostic factor for the overall survival in glioma patients (P < 0.001, hazard ratio, 8.177, 95% CI 2.571-26.008). In conclusion, the increased expression of MSP58 is correlated with a higher malignant grade and poor prognosis in glioma patients. MSP58 is valuable both as an indicator of the malignancy of gliomas and as a prognostic factor for the clinical outcome of glioma patients.
Collapse
Affiliation(s)
- Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mittra ES, Fan-Minogue H, Lin FI, Karamchandani J, Sriram V, Han M, Gambhir SS. Preclinical efficacy of the anti-hepatocyte growth factor antibody ficlatuzumab in a mouse brain orthotopic glioma model evaluated by bioluminescence, PET, and MRI. Clin Cancer Res 2013; 19:5711-21. [PMID: 23983258 DOI: 10.1158/1078-0432.ccr-12-1015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ficlatuzumab is a novel therapeutic agent targeting the hepatocyte growth factor (HGF)/c-MET pathway. We summarize extensive preclinical work using this agent in a mouse brain orthotopic model of glioblastoma. EXPERIMENTAL DESIGN Sequential experiments were done using eight- to nine-week-old nude mice injected with 3 × 10(5) U87 MG (glioblastoma) cells into the brain. Evaluation of ficlatuzumab dose response for this brain tumor model and comparison of its response to ficlatuzumab and to temozolamide were conducted first. Subsequently, various small-animal imaging modalities, including bioluminescence imaging (BLI), positron emission tomography (PET), and MRI, were used with a U87 MG-Luc 2 stable cell line, with and without the use of ficlatuzumab, to evaluate the ability to noninvasively assess tumor growth and response to therapy. ANOVA was conducted to evaluate for significant differences in the response. RESULTS There was a survival benefit with ficlatuzumab alone or in combination with temozolamide. BLI was more sensitive than PET in detecting tumor cells. Fluoro-D-thymidine (FLT) PET provided a better signal-to-background ratio than 2[(18)F]fluoro-2-deoxy-d-glucose (FDG) PET. In addition, both BLI and FLT PET showed significant changes over time in the control group as well as with response to therapy. MRI does not disclose any time-dependent change. Also, the MRI results showed a temporal delay in comparison to the BLI and FLT PET findings, showing similar results one drug cycle later. CONCLUSIONS Targeting the HGF/c-MET pathway with the novel agent ficlatuzumab appears promising for the treatment of glioblastoma. Various clinically applicable imaging modalities including FLT, PET, and MRI provide reliable ways of assessing tumor growth and response to therapy. Given the clinical applicability of these findings, future studies on patients with glioblastoma may be appropriate.
Collapse
Affiliation(s)
- Erik S Mittra
- Authors' Affiliations: Molecular Imaging Program, Department of Radiology, System Medicine, Department of Pediatrics, Division of Neuropathology, Department of Pathology, Merck Research Laboratories, Palo Alto, California; AVEO Pharmaceuticals Inc., Cambridge, Massachusettes; and Bio-X Program, Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu X, Cui W, Li B, Hong Z. Targeted therapy for glioma using cyclic RGD-entrapped polyionic complex nanomicelles. Int J Nanomedicine 2012; 7:2853-62. [PMID: 22745548 PMCID: PMC3383325 DOI: 10.2147/ijn.s29788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The purpose of this study was to test the efficacy of cyclic Arg-Gly-Asp (RGD) peptide conjugated with polyionic complex nanomicelles as targeted therapy for glioma. METHODS A stable cyclic RGD polyionic complex nanostructure, ie, a c(RGDfC) polyionic complex micelle, was synthesized and its biocompatibility with cultured neurons was assessed using a cell viability assay. Targeted binding to cultured glioma cells was evaluated by the CdTe quantum dot marking technique and a cell viability assay. The inhibitory effect of the nanomicelles against glioma cells was also evaluated, and their targeted migration into rat brain glioma cells and apoptotic effects were traced by the CdTe quantum dot marking and immunohistochemical staining. RESULTS c(RGDfC) polyionic complex micelles did not affect the growth of neurons but bonded selectively to and inhibited proliferation of glioma cells in vitro. When tested in vivo, the micelles migrated into glioma cells, inducing apoptosis in the rat brain. CONCLUSION The c(RGDfC) polyionic complex micelle is an effective targeted therapy against glioma.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai China.
| | | | | | | |
Collapse
|
29
|
Alieva M, Bagó JR, Aguilar E, Soler-Botija C, Vila OF, Molet J, Gambhir SS, Rubio N, Blanco J. Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PLoS One 2012; 7:e35148. [PMID: 22529983 PMCID: PMC3328467 DOI: 10.1371/journal.pone.0035148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/08/2012] [Indexed: 12/12/2022] Open
Abstract
Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 104 relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection.
Collapse
Affiliation(s)
- Maria Alieva
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
| | - Juli R. Bagó
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
| | - Elisabet Aguilar
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
| | | | - Olaia F. Vila
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
| | - Joan Molet
- Neurosurgery Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Sanjiv S. Gambhir
- Department of Radiology, The Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Nuria Rubio
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
| | - Jerónimo Blanco
- Cardiovascular Research Center, CSIC-ICCC, CIBER-BBN, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. Eur J Nucl Med Mol Imaging 2012; 39:1089-96. [PMID: 22419257 DOI: 10.1007/s00259-012-2093-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/16/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE Several diagnostic trials have indicated that the combined use of (18)F-fluoroethyl-L: -tyrosine (FET) PET and MRI may be superior to MRI alone in selecting the biopsy site for the diagnosis of gliomas. We estimated the cost-effectiveness of the use of amino acid PET compared to MRI alone from the perspective of the German statutory health insurance. METHODS To evaluate the incremental cost-effectiveness of the use of amino acid PET, a decision tree model was built. The effectiveness of FET PET was determined by the probability of a correct diagnosis. Costs were estimated for a baseline scenario and for a more expensive scenario in which disease severity was considered. The robustness of the results was tested using deterministic and probabilistic sensitivity analyses. RESULTS The combined use of PET and MRI resulted in an increase of 18.5% in the likelihood of a correct diagnosis. The incremental cost-effectiveness ratio for one additional correct diagnosis using FET PET was €6,405 for the baseline scenario and €9,114 for the scenario based on higher disease severity. The probabilistic sensitivity analysis confirmed the robustness of the results. CONCLUSION The model indicates that the use of amino acid PET may be cost-effective in patients with glioma. As a result of several limitations in the data used for the model, further studies are needed to confirm the results.
Collapse
|
31
|
Abstract
Cellular energy metabolism is one of the main processes affected during the transition from normal to cancer cells, and it is a crucial determinant of cell proliferation or cell death. As a support for rapid proliferation, cancer cells choose to use glycolysis even in the presence of oxygen (Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis, rather than fuel the tricarboxylic acid cycle and oxidative phosphorylation. Mitochondria biogenesis is also reprogrammed in cancer cells, and the destiny of those cells is determined by the balance between energy and macromolecule supplies, and the efficiency of buffering of the cumulative radical oxygen species. In glioblastoma, the most frequent and malignant adult brain tumor, a metabolic shift toward aerobic glycolysis is observed, with regulation by well known genes as integrants of oncogenic pathways such as phosphoinositide 3-kinase/protein kinase, MYC, and hypoxia regulated gene as hypoxia induced factor 1. The expression profile of a set of genes coding for glycolysis and the tricarboxylic acid cycle in glioblastoma cases confirms this metabolic switch. An understanding of how the main metabolic pathways are modified by cancer cells and the interactions between oncogenes and tumor suppressor genes with these pathways may enlighten new strategies in cancer therapy. In the present review, the main metabolic pathways are compared in normal and cancer cells, and key regulations by the main oncogenes and tumor suppressor genes are discussed. Potential therapeutic targets of the cancer energetic metabolism are enumerated, highlighting the astrocytomas, the most common brain cancer.
Collapse
|