1
|
Wang B, Xiong W, Guo Y. Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2291. [PMID: 39204727 PMCID: PMC11359004 DOI: 10.3390/plants13162291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sorghum (Sorghum bicolor) holds a significant position as the fifth most vital cereal crop globally. Its drought resistance and robust biomass production, coupled with commendable nutritional value, make sorghum a promising choice for animal feed. Nevertheless, the utilization of sorghum in animal production faces hurdles of dhurrin (a cyanogenic glycoside) poisoning. While dhurrin serves as a protective secondary metabolite during sorghum growth, the resulting highly toxic hydrogen cyanide poses a significant threat to animal safety. This review extensively examines the biometabolic processes of dhurrin, the pivotal genes involved in the regulation of dhurrin biosynthesis, and the factors influencing dhurrin content in sorghum. It delves into the impact of dhurrin on animal production and explores measures to mitigate its content, aiming to provide insights for advancing research on dhurrin metabolism regulation in sorghum and its rational utilization in animal production.
Collapse
Affiliation(s)
- Bo Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wangdan Xiong
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Mohamed ZA, Elnour RO, Alamri S, Hashem M, Campos A, Vasconcelos V, Badawye H. Presence of the neurotoxin β-N-methylamino-L-alanine in irrigation water and accumulation in cereal grains with human exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31479-31491. [PMID: 38635096 DOI: 10.1007/s11356-024-33188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The present study demonstrates the presence of the neurotoxin β-N-methylamino-L-alanine and its cyanobacterial producers in irrigation water and grains of some cereal plants from farmlands irrigated with Nile River water in Egypt. BMAA detected by LC-MS/MS in phytoplankton samples was found at higher concentrations of free form (0.84-11.4 μg L-1) than of protein-bound form (0.16-1.6 μg L-1), in association with the dominance of cyanobacteria in irrigation water canals. Dominant cyanobacterial species isolated from these irrigation waters including Aphanocapsa planctonica, Chroococcus minutus, Dolichospermum lemmermanni, Nostoc commune, and Oscillatoria tenuis were found to produce different concentrations of free (4.8-71.1 µg g-1 dry weight) and protein-bound (0.1-11.4 µg g-1 dry weight) BMAA. In the meantime, BMAA was also detected in a protein-bound form only in grains of corn (3.87-4.51 µg g-1 fresh weight) and sorghum (5.1-7.1 µg g-1 fresh weight) plants, but not in wheat grains. The amounts of BMAA accumulated in these grains correlated with BMAA concentrations detected in relevant irrigation water canals. The presence of BMAA in cereal grains would constitute a risk to human and animal health upon consumption of contaminated grains. The study, therefore, suggests continuous monitoring of BMAA and other cyanotoxins in irrigation waters and edible plants to protect the public against exposure to such potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Rehab O Elnour
- Biology Department, Faculty of Sciences and Arts, Dahran Al-Janoub, King Khalid University, Abha, Saudi Arabia
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Hanan Badawye
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
3
|
Šárka E, Sinica A, Smrčková P, Sluková M. Non-Traditional Starches, Their Properties, and Applications. Foods 2023; 12:3794. [PMID: 37893687 PMCID: PMC10606120 DOI: 10.3390/foods12203794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review paper focuses on the recent advancements in the large-scale and laboratory-scale isolation, modification, and characterization of novel starches from accessible botanical sources and food wastes. When creating a new starch product, one should consider the different physicochemical changes that may occur. These changes include the course of gelatinization, the formation of starch-lipids and starch-protein complexes, and the origin of resistant starch (RS). This paper informs about the properties of individual starches, including their chemical structure, the size and crystallinity of starch granules, their thermal and pasting properties, their swelling power, and their digestibility; in particular, small starch granules showed unique properties. They can be utilized as fat substitutes in frozen desserts or mayonnaises, in custard due to their smooth texture, in non-food applications in biodegradable plastics, or as adsorbents. The low onset temperature of gelatinization (detected by DSC in acorn starch) is associated with the costs of the industrial processes in terms of energy and time. Starch plays a crucial role in the food industry as a thickening agent. Starches obtained from ulluco, winter squash, bean, pumpkin, quinoa, and sweet potato demonstrate a high peak viscosity (PV), while waxy rice and ginger starches have a low PV. The other analytical methods in the paper include laser diffraction, X-ray diffraction, FTIR, Raman, and NMR spectroscopies. Native, "clean-label" starches from new sources could replace chemically modified starches due to their properties being similar to common commercially modified ones. Human populations, especially in developed countries, suffer from obesity and civilization diseases, a reduction in which would be possible with the help of low-digestible starches. Starch with a high RS content was discovered in gelatinized lily (>50%) and unripe plantains (>25%), while cooked lily starch retained low levels of rapidly digestible starch (20%). Starch from gorgon nut processed at high temperatures has a high proportion of slowly digestible starch. Therefore, one can include these types of starches in a nutritious diet. Interesting industrial materials based on non-traditional starches include biodegradable composites, edible films, and nanomaterials.
Collapse
Affiliation(s)
- Evžen Šárka
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.S.); (P.S.); (M.S.)
| | | | | | | |
Collapse
|
4
|
Hamad GM, Gerges M, Mehany T, Hussein SM, Eskander M, Tawfik RG, El-Halmouch Y, Mansour AM, Hafez EE, Esatbeyoglu T, Elghazaly EM. Estimating the Prevalence of Foodborne Pathogen Campylobacter jejuni in Chicken and Its Control via Sorghum Extracts. Pathogens 2023; 12:958. [PMID: 37513805 PMCID: PMC10385792 DOI: 10.3390/pathogens12070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative bacterium which is considered as the most reported cause of foodborne infection, especially for poultry species. The object of this work is to evaluate the occurrence of C. jejuni in chicken meat as well its control via three types of sorghum extracts (white sorghum (WS), yellow sorghum (YS), and red sorghum (RS)); antibacterial activity, antioxidant power, and cytotoxicity of sorghum extracts were also assessed. It was found that C. jejuni is very abundant in chicken meat, especially breast and thigh. WS extract showed more effectiveness than both yellow and red ones. Lyophilized WS extract offered high total phenolic compounds (TPCs) and total flavonoid compounds (TFCs) of 64.2 ± 0.8 mg gallic acid equivalent (GAE/g) and 33.9 ± 0.4 mg catechol equivalent (CE)/g, respectively. Concerning the antibacterial and antioxidant activities, WS showed high and significant antibacterial activity (p < 0.001); hence, WS displayed a minimum inhibitory concentration (MIC) of 6.25%, and revealed an inhibition zone of 7.8 ± 0.3 mm; it also showed an IC50 at a concentration of 34.6 μg/mL. In our study, different samples of chicken fillet were collected and inoculated with pathogenic C. jejuni and stored at 4 °C. Inoculated samples were treated with lyophilized WS extract at (2%, 4%, and 6%), the 2% treatment showed a full reduction in C. jejuni on the 10th day, the 4% treatment showed a full reduction in C. jejuni on the 8th day, while the 6% treatment showed a full reduction in C. jejuni on the 6th day. Additionally, 2%, 4%, and 6% WS extracts were applied on un-inoculated grilled chicken fillet, which enhanced its sensory attributes. In sum, WS extract is a promising natural preservative for chicken meat with accepted sensory evaluation results thanks to its high antibacterial and antioxidant potentials.
Collapse
Affiliation(s)
- Gamal M Hamad
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Mariam Gerges
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 22758, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Saleh M Hussein
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Michael Eskander
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Rasha G Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Yasser El-Halmouch
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Alaa M Mansour
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Eman M Elghazaly
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh 51511, Egypt
| |
Collapse
|
5
|
Zhu S, Han X, Yang R, Tian Y, Zhang Q, Wu Y, Dong S, Zhang B. Metabolomics study of ribavirin in the treatment of orthotopic lung cancer based on UPLC-Q-TOF/MS. Chem Biol Interact 2023; 370:110305. [PMID: 36529159 DOI: 10.1016/j.cbi.2022.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Ribavirin is a common antiviral drug, especially for patients with hepatitis C. Our recent studies demonstrated that ribavirin showed anti-tumor activity in colorectal cancer and hepatocellular carcinoma, but its effects on lung cancer remains unclear. This study aimed to evaluate the anti-tumor activity of ribavirin against lung cancer and elucidate the underlying mechanism. We established orthotopic mouse model of lung cancer (LLC and GLC-82) and employed an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics approach. We found that ribavirin significantly inhibited the proliferation and colony formation of lung cancer cells. Tumor sizes of orthotopic lung cancer in ribavirin-treated groups were also significantly lower than those in control groups. Metabolomics analysis revealed that ribavirin mainly affected 5 metabolic pathways in orthotopic lung tumor models, taurine and hypotaurine metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, arginine biosynthesis and arachidonic acid metabolism. Furthermore, we identified 5 upregulated metabolites including β-nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM), taurine, ornithine and citrulline, and 7 downregulated metabolites including 1-methylnicotinamide (MNAM), S-adenosyl-l-homocysteine (SAH), N1-Methyl-2-pyridone-5-carboxamide (2PY), homocysteine (Hcy), linoleic acid, arachidonic acid (AA) and argininosuccinic acid in ribavirin-treated groups. These results provide new insight into the anti-tumor mechanism of ribavirin for lung cancer.
Collapse
Affiliation(s)
- Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Han
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|