1
|
Kurgina TA, Shram SI, Kutuzov MM, Abramova TV, Shcherbakova TA, Maltseva EA, Poroikov VV, Lavrik OI, Švedas VK, Nilov DK. Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:823-831. [PMID: 36171646 DOI: 10.1134/s0006297922080132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC50 values for 8h7mGua at different concentrations of the NAD+ substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.
Collapse
Affiliation(s)
- Tatyana A Kurgina
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Tatyana A Shcherbakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Aboelnga MM, Wetmore SD. Unveiling a Single-Metal-Mediated Phosphodiester Bond Cleavage Mechanism for Nucleic Acids: A Multiscale Computational Investigation of a Human DNA Repair Enzyme. J Am Chem Soc 2019; 141:8646-8656. [PMID: 31046259 DOI: 10.1021/jacs.9b03986] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed M. Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
3
|
Rajagopalan M, Balasubramanian S, Ramaswamy A. Structural dynamics of wild type and mutated forms of human L1 endonuclease and insights into its sequence specific nucleic acid binding mechanism: A molecular dynamics study. J Mol Graph Model 2017; 76:43-55. [PMID: 28704776 DOI: 10.1016/j.jmgm.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
Biomolecular recognition of proteins and nucleic acids is mainly mediated by their structural features and the molecular dynamics simulations approach has been used to explore this recognition processes at the atomic level. L1-Endonuclease, an enzyme involved in L1 retrotransposition, cleaves the TA junction DNA (5'-TTTT/AA-3') and expresses high specificity for target site recognition. The present study highlights the structural features of L1-endonuclease as well as DNA responsible for such specific recognition. Especially, the importance of βB6-B5 hairpin loop in DNA recognition has been elucidated by analyzing the dynamics of Thr192 mutated L1-endonuclease. In addition, simulations of the endonuclease complexed with DNA substrates (sequences having TA and CG junctions) revealed the specificity of L1 endonuclease towards TA junction. Molecular dynamics simulations revealed that the βB6-B5 hairpin loop protrudes well into the minor groove of DNA having TA junction and induces DNA bending such that the width of minor groove is increased. Such endonuclease induced bending of TA junction DNA sequence positions the scissile phosphodiester bond of DNA for cleavage. The innate property of minor groove widening in TA junction than in CG junction is utilized by the βB6-βB5 hairpin loop of endonuclease while recognizing the DNA sequences. The present study also highlights the role of Mg2+ cation in catalysis and attempts to explore the possible target site DNA cleavage mechanism.
Collapse
Affiliation(s)
- Muthukumaran Rajagopalan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sangeetha Balasubramanian
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Amutha Ramaswamy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
4
|
Zakhidov ST, Rudoy VM, Dement’eva OV, Mudzhiri NM, Makarova NV, Zelenina IA, Andreeva LE, Marshak TL. Effect of ultrasmall gold nanoparticles on the murine native sperm chromatin. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yevdokimov YM, Salyanov VI, Skuridin SG, Shtykova EV, Khlebtsov NG, Kats EI. Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
7
|
Zakhidov ST, Pavlyuchenkova SM, Samoylov AV, Mudzhiri NM, Marshak TL, Rudoy VM, Dement’eva OV, Zelenina IA, Skuridin SG, Yevdokimov YM. Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013060149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|