1
|
Samarskaya VO, Koblova S, Suprunova T, Rogozhin EA, Spechenkova N, Yakunina S, Love AJ, Kalinina NO, Taliansky M. Poly ADP-Ribosylation in a Plant Pathogenic Oomycete Phytophthora infestans: A Key Controller of Growth and Host Plant Colonisation. J Fungi (Basel) 2025; 11:29. [PMID: 39852448 PMCID: PMC11766942 DOI: 10.3390/jof11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
ADP-ribosylation is a reversible modification of proteins and nucleic acids, which controls major cellular processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress, and immunity in plants and animals. The involvement of ADP-ribosylation in the life cycle of Dictyostelium and some filamentous fungi has also been demonstrated. However, the role of this process in pathogenic oomycetes has never been addressed. Here, we show that the Phytophthora infestans genome contains two PARP-like protein genes (PiPARP1 and PiPARP2), and provide evidence of PARylation activity for one of them (PiPARP2). Using dsRNA-mediated RNA silencing of the PiPARP2 gene and chemical (pharmacological) inhibition of PARP activity by 3-aminobenzamide (3AB) PARP inhibitor, we demonstrate the critical functional role of ADP-ribosylation in Phytophthora mycelium growth. Virulence test on detached leaves also suggests an important role of ADP-ribosylation in Phytophthora host plant colonisation and pathogenesis. On a practical level, our data suggest that targeting the PARylation system may constitute a novel powerful approach for the management of Phytophthora diseases.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofya Koblova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Tatiana Suprunova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofiya Yakunina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Andrew J. Love
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
2
|
Kalinina NO, Spechenkova N, Ilina I, Samarskaya VO, Bagdasarova P, Zavriev SK, Love AJ, Taliansky M. Disruption of Poly(ADP-ribosyl)ation Improves Plant Tolerance to Methyl Viologen-Mediated Oxidative Stress via Induction of ROS Scavenging Enzymes. Int J Mol Sci 2024; 25:9367. [PMID: 39273315 PMCID: PMC11395660 DOI: 10.3390/ijms25179367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
ADP-ribosylation (ADPRylation) is a mechanism which post-translationally modifies proteins in eukaryotes in order to regulate a broad range of biological processes including programmed cell death, cell signaling, DNA repair, and responses to biotic and abiotic stresses. Poly(ADP-ribosyl) polymerases (PARPs) play a key role in the process of ADPRylation, which modifies target proteins by attaching ADP-ribose molecules. Here, we investigated whether and how PARP1 and PARylation modulate responses of Nicotiana benthamiana plants to methyl viologen (MV)-induced oxidative stress. It was found that the burst of reactive oxygen species (ROS), cell death, and loss of tissue viability invoked by MV in N. benthamiana leaves was significantly delayed by both the RNA silencing of the PARP1 gene and by applying the pharmacological inhibitor 3-aminobenzamide (3AB) to inhibit PARylation activity. This in turn reduced the accumulation of PARylated proteins and significantly increased the gene expression of major ROS scavenging enzymes including SOD (NbMnSOD; mitochondrial manganese SOD), CAT (NbCAT2), GR (NbGR), and APX (NbAPX5), and inhibited cell death. This mechanism may be part of a broader network that regulates plant sensitivity to oxidative stress through various genetically programmed pathways.
Collapse
Affiliation(s)
- Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Polina Bagdasarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
3
|
Al-Rahahleh RQ, Saville KM, Andrews JF, Wu Z, Koczor CA, Sobol RW. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573650. [PMID: 38234836 PMCID: PMC10793466 DOI: 10.1101/2023.12.29.573650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F. Andrews
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912
| | - Christopher A. Koczor
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
4
|
Maluchenko N, Saulina A, Geraskina O, Kotova E, Korovina A, Feofanov A, Studitsky V. Zinc-dependent Nucleosome Reorganization by PARP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562808. [PMID: 37904948 PMCID: PMC10614866 DOI: 10.1101/2023.10.17.562808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Poly(ADP-ribose)polymerase 2 (PARP2) is a nuclear protein that acts as a DNA damage sensor; it recruits the repair enzymes to a DNA damage site and facilitates formation of the repair complex. Using single particle Förster resonance energy transfer microscopy and electrophoretic mobility shift assay (EMSA) we demonstrated that PARP2 forms complexes with a nucleosome containing different number of PARP2 molecules without altering conformation of nucleosomal DNA both in the presence and in the absence of Mg 2+ or Ca 2+ ions. In contrast, Zn 2+ ions directly interact with PARP2 inducing a local alteration of the secondary structure of the protein and PARP2-mediated, reversible structural reorganization of nucleosomal DNA. AutoPARylation activity of PARP2 is enhanced by Mg 2+ ions and modulated by Zn 2+ ions: suppressed or enhanced depending on the occupancy of two functionally different Zn 2+ binding sites. The data suggest that Zn 2+ /PARP2-induced nucleosome reorganization and transient changes in the concentration of the cations could modulate PARP2 activity and the DNA damage response. Significance Statement PARP2 recognizes and binds DNA damage sites, recruits the repair enzymes to these sites and facilitates formation of the repair complex. Zn 2+ -induced structural reorganization of nucleosomal DNA in the complex with PARP2, which is reported in the paper, could modulate the DNA damage response. The obtained data indicate the existence of specific binding sites of Mg 2+ and Zn 2+ ions in and/or near the catalytic domain of PARP2, which modulate strongly, differently and ion-specifically PARylation activity of PARP2, which is important for maintaining genome stability, adaptation of cells to stress, regulation of gene expression and antioxidant defense.
Collapse
|
5
|
Spechenkova N, Kalinina NO, Zavriev SK, Love AJ, Taliansky M. ADP-Ribosylation and Antiviral Resistance in Plants. Viruses 2023; 15:241. [PMID: 36680280 PMCID: PMC9861866 DOI: 10.3390/v15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members of the poly(ADP-ribosyl) polymerase (PARP) family play a central role in the process of ADPRylation. Protein targets can be modified by adding either a single ADP-ribose moiety (mono(ADP-ribosyl)ation; MARylation), which is catalysed by mono(ADP-ribosyl) transferases (MARTs or PARP "monoenzymes"), or targets may be decorated with chains of multiple ADP-ribose moieties (PARylation), via the activities of PARP "polyenzymes". Studies have revealed crosstalk between PARylation (and to a lesser extent, MARylation) processes in plants and plant-virus interactions, suggesting that these tight links may represent a novel factor regulating plant antiviral immunity. From this perspective, we go through the literature linking PARylation-associated processes with other plant regulation pathways controlling virus resistance. Once unraveled, these links may serve as the basis of innovative strategies to improve crop resistance to viruses under challenging environmental conditions which could mitigate yield losses.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
6
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Maluchenko N, Koshkina D, Korovina A, Studitsky V, Feofanov A. Interactions of PARP1 Inhibitors with PARP1-Nucleosome Complexes. Cells 2022; 11:cells11213343. [PMID: 36359739 PMCID: PMC9658683 DOI: 10.3390/cells11213343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Inhibitors (PARPi) of poly(ADP-ribose-)polymerase-1 (PARP1) are used in antitumor therapy; their cytotoxicity correlates with the efficiency of PARP1 trapping in cell chromatin. Previous studies have demonstrated the PARPi-induced trapping of PARP1 on DNA, although details of the mechanism remain controversial. Here, the interactions of PARP1-nucleosome complexes with PARPi, olaparib (Ola), talazoparib (Tala), and veliparib (Veli) were studied. PARPi trap PARP1 on nucleosomes without affecting the structure of PARP1-nucleosome complexes. The efficiency of PARP1 trapping on nucleosomes increases in the order of Tala>Ola>>Veli, recapitulating the relative trapping efficiencies of PARPi in cells, but different from the relative potency of PARPi to inhibit the catalytic activity of PARP1. The efficiency of PARP1 trapping on nucleosomes correlates with the level of inhibition of auto-PARylation, which otherwise promotes the dissociation of PARP1-nucleosome complexes. The trapping efficiencies of Tala and Ola (but not Veli) are additionally modulated by the enhanced PARP1 binding to nucleosomes. The dissociation of PARP1-nucleosome complexes occurs without a loss of histones and leads to the restoration of the intact structure of nucleosomal DNA. The data suggest that the chromatin structure can considerably affect the efficiency of the PARPi action.
Collapse
Affiliation(s)
- Natalya Maluchenko
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (N.M.); (A.F.)
| | - Darya Koshkina
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia
| | - Anna Korovina
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia
- Correspondence: (N.M.); (A.F.)
| |
Collapse
|