1
|
Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, Yu T, Lin Y, Han B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J Funct Biomater 2024; 15:233. [PMID: 39194671 DOI: 10.3390/jfb15080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Chenda Meng
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
López-Valverde N, Macedo de Sousa B, Blanco Rueda JA. Changes of the Alveolar Bone Ridge Using Bone Mineral Grafts and Collagen Membranes after Tooth Extraction: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:565. [PMID: 38927801 PMCID: PMC11200736 DOI: 10.3390/bioengineering11060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Alveolar preservation techniques for esthetic or functional purposes, or both, are a frequently used alternative for the treatment of post-extraction sockets, the aim of which is the regeneration of the lesion and the preservation of the alveolar bone crest. METHODS Studies published in PubMed (Medline), Web of Science, Embase, and Cochrane Library databases up to January 2024 were consulted. Inclusion criteria were established as intervention studies, according to the PICOs strategy: adult subjects undergoing dental extractions (participants), with alveoli treated with bone mineral grafts and collagen membranes (intervention), compared to spontaneous healing (comparison), and observing the response to treatment in clinical and radiological measures of the alveolar bone crest (outcomes). RESULTS We obtained 561 results and selected 12 studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool, and methodological quality was assessed using the Joanna Briggs Institute. Due to the high heterogeneity of the studies (I2 > 75%), a random-effects meta-analysis was used. Despite the trend, no statistical significance (p > 0.05) was found in the experimental groups. CONCLUSIONS The use of bone mineral grafts in combination with resorbable collagen barriers provides greater preservation of the alveolar ridge, although more clinical studies are needed.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37008 Salamanca, Spain;
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal;
| | - José Antonio Blanco Rueda
- Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
3
|
Elad A, Pul L, Rider P, Rogge S, Witte F, Tadić D, Mijiritsky E, Kačarević ŽP, Steigmann L. Resorbable magnesium metal membrane for sinus lift procedures: a case series. BMC Oral Health 2023; 23:1006. [PMID: 38097992 PMCID: PMC10722874 DOI: 10.1186/s12903-023-03695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The purpose of this case series was to demonstrate the use of a magnesium membrane for repairing the perforated membrane in both direct and indirect approaches, as well as its application in instances where there has been a tear of the Schneiderian membrane. CASE PRESENTATION The case series included four individual cases, each demonstrating the application of a magnesium membrane followed by bone augmentation using a mixture of xenograft and allograft material in the sinus cavity. In the first three cases, rupture of Schneiderian membrane occurred as a result of tooth extraction, positioning of the dental implant, or as a complication during the procedure. In the fourth case, Schneiderian membrane was perforated as a result of the need to aspirate a polyp in the maxillary sinus. In case one, 10 mm of newly formed bone is visible four months after graft placement. Other cases showed between 15 and 20 mm of newly formed alveolar bone. No residual magnesium membrane was seen on clinical inspection. The vertical and horizontal augmentations proved stable and the dental implants were placed in the previously grafted sites. CONCLUSION Within the limitations of this case series, postoperative clinical examination, and panoramic and CBCT images demonstrated that resorbable magnesium membrane is a viable material for sinus lift and Schneiderian membrane repair. The case series showed successful healing and formation of new alveolar bone with separation of the oral cavity and maxillary sinus in four patients.
Collapse
Affiliation(s)
| | - Luka Pul
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000, Osijek, Croatia
| | | | - Svenja Rogge
- Botiss Biomaterials GmbH, 15806, Zossen, Germany
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Aßmannshauser Straße, 4-6, 14197, Berlin, Germany
| | - Dražen Tadić
- Botiss Biomaterials GmbH, 15806, Zossen, Germany
| | - Eitan Mijiritsky
- Department of Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, The Sackler Faculty of Medicine, Tel-Aviv University, 6139001, Tel Aviv, Israel
| | - Željka Perić Kačarević
- Botiss Biomaterials GmbH, 15806, Zossen, Germany.
- Department of Anatomy, Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000, Osijek, Croatia.
| | - Larissa Steigmann
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|