1
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
2
|
De Martino M, Esposito F, Chieffi P. An update on microRNAs as potential novel therapeutic targets in testicular germ cell tumors. Intractable Rare Dis Res 2020; 9:184-186. [PMID: 32844079 PMCID: PMC7441029 DOI: 10.5582/irdr.2020.03025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20- 40 years of age and the most frequent cause of death from solid tumors in this age group. Recent studies have underscored the fact that miRNA deregulation is a feature of carcinogenesis, including TGCT development and progression. MiRNAs are a group of small noncoding RNAs that bind to the 3'-untranslated region (UTR) of the targeted mRNAs, thus causing mRNA degradation or the inhibition of its translation, regulating gene expression in a temporal and tissue-specific manner. However, few miRNAs have been found to play key roles in TGCTs; recently, other miRNAs have been identified, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marco De Martino
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Address correspondence to:Paolo Chieffi, Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
3
|
Testicular Choriocarcinoma Metastasizing to the Small Bowel Causing Intussusception: Case Report. J Gastrointest Cancer 2020; 50:1005-1008. [PMID: 30368692 DOI: 10.1007/s12029-018-0172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Ronchi A, Cozzolino I, Montella M, Panarese I, Zito Marino F, Rossetti S, Chieffi P, Accardo M, Facchini G, Franco R. Extragonadal germ cell tumors: Not just a matter of location. A review about clinical, molecular and pathological features. Cancer Med 2019; 8:6832-6840. [PMID: 31568647 PMCID: PMC6853824 DOI: 10.1002/cam4.2195] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022] Open
Abstract
Extragonadal germ cell tumors (EGGCTs) are uncommon neoplasms, which arise in anatomical locations other than gonads. The pathogenesis of these neoplasms is still poorly understood and it is a matter of debate if they really represent extragondal primary neoplasms or rather extragondal metastasis from occult gonadal neoplasms. The actual observations suggest that EGGCTs represent a unique entity, so their biology and behavior are substantially different from gonadal counterparts. The diagnosis of EGGCTs is often challenging, and differential diagnosis is particularly wide. Nevertheless, a correct diagnosis is essential for the correct management of the patient. We summarize the state of art about EGGCTs, with particular emphasis on diagnosis and prognosis.
Collapse
Affiliation(s)
- Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sabrina Rossetti
- Uro-Andrologic Oncology Unit, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gaetano Facchini
- Uro-Andrologic Oncology Unit, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-34 years of age and the most frequent cause of death from solid tumors in this age group. In addition, the incidence of these tumors has significantly increased over the last few decades. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantage to discriminate between histological subgroups and could represent useful molecular therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 3181100 Caserta, Italy. E-mail:
| |
Collapse
|
6
|
c-Src Recruitment is Involved in c-MET-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells. Int J Mol Sci 2019; 20:ijms20020320. [PMID: 30646583 PMCID: PMC6358843 DOI: 10.3390/ijms20020320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
c-MET pathway over-activation is the signature of malignancy acquisition or chemotherapy resistance of many cancers. We recently demonstrated that type II Testicular Germ Cell Tumours (TGCTs) express c-MET receptor. In particular, we elucidated that the non-seminoma lesions express c-MET protein at higher level, compared with the seminoma ones. In line with this observation, NTERA-2 clone D1 (NT2D1) non-seminoma cells increase their proliferation, migration and invasion in response to Hepatocyte Growth Factor (HGF). One of the well-known adaptor-proteins belonging to c-MET signaling cascade is c-Src. Activation of c-Src is related to the increase of aggressiveness of many cancers. For this reason, we focused on the role of c-Src in c-MET-triggered and HGF-dependent NT2D1 cell activities. In the present paper, we have elucidated that this adaptor-protein is involved in HGF-dependent NT2D1 cell proliferation, migration and invasion, since Src inhibitor-1 administration abrogates these responses. Despite these biological evidences western blot analyses have not revealed the increase of c-Src activation because of HGF administration. However, notably, immunofluorescence analyses revealed that cytoplasmic and membrane-associated localization of c-Src shifted to the nuclear compartment after HGF stimulation. These results shed new light in the modality of HGF-dependent c-Src recruitment, and put the basis for novel investigations on the relationship between c-Src, and TGCT aggressiveness.
Collapse
|
7
|
Scheri KC, Leonetti E, Laino L, Gigantino V, Gesualdi L, Grammatico P, Bizzari M, Franco R, Oosterhuis JW, Stoop H, Looijenga LHJ, Ricci G, Catizone A. c-MET receptor as potential biomarker and target molecule for malignant testicular germ cell tumors. Oncotarget 2018; 9:31842-31860. [PMID: 30159127 PMCID: PMC6112764 DOI: 10.18632/oncotarget.25867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
Type II testicular germ cell tumors (TGCTs) represent the most frequent malignancy in Caucasian males (20–40 years). Even if diagnosed with disseminated disease, >80% of patients are cured; however, a small percentage of cases progress and result in death. It is commonly accepted that these cancers arise from a disturbed testicular embryonic niche that leads to the block of gonocyte differentiation. The subsequent development of the invasive seminomas and non-seminomas is due to a combination of genetic, epigenetic and microenvironment-based alterations (genvironment). Hepatocyte growth factor (HGF) is present in the testicular microenvironment, together with its receptor c-MET, from early embryonic development to an adult stage. In addition, c-MET is a well-known proto-oncogene involved in the onset and progression of various human cancers. Herein, we have investigated the expression and availability of HGF and c-MET in TCam-2, NCCIT and NT2D1 cells, which are type II (T)GCT representative cell lines, and the effect of c-MET activation/repression on the regulation of cancerous biological processes. We found that NT2D1 cells increase their proliferation, polarized migration, and invasion in response to HGF administration. NCCIT cells respond to HGF stimulation only partially, whereas TCam-2 cells do not respond to HGF, at least according to the investigated parameters. Interestingly, the immunohistochemical study of c-MET distribution in TGCTs confirm its presence in both seminoma and non-seminoma lesions with different patterns. Notably, we found the highest c-MET immunoreactivity in the epithelial elements of the various components of TGCTs: teratoma, yolk sac tumor and choriocarcinoma.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Erica Leonetti
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Luigi Laino
- Department of Molecular Medicine, Laboratory of Medical Genetics, "Sapienza" University of Rome, San Camillo-Forlanini Hospital, Rome, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori I.R.C.C.S. "Fondazione Pascale", Naples, Italy
| | - Luisa Gesualdi
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Paola Grammatico
- Department of Molecular Medicine, Laboratory of Medical Genetics, "Sapienza" University of Rome, San Camillo-Forlanini Hospital, Rome, Italy
| | - Mariano Bizzari
- Department of Experimental Medicine, Systems Biology Group Lab, "Sapienza" University of Rome, Italy
| | - Renato Franco
- Pathological Anatomy Unit, Department of Psychic and Physic health and preventive medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| |
Collapse
|
8
|
Abstract
Testicular germ cell tumor (TGCT) is the most common solid malignancy occurring in young men between 20 and 34 years of age, and its incidence has increased significantly over the last decades. Clinically several types of immunohistochemical markers are useful and sensitive. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include OCT3/4, HMGA1 and 2, NANOG, SOX2, and LIN28. Gene expression in TGCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TGCT subtypes that reflect the normal developmental switch in primordial germ cells from an under to normally methylated genome.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to: Dr. Paolo Chieffi, Dipartimento di Psicologia, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
9
|
Boccellino M, Vanacore D, Zappavigna S, Cavaliere C, Rossetti S, D'Aniello C, Chieffi P, Amler E, Buonerba C, Di Lorenzo G, Di Franco R, Izzo A, Piscitelli R, Iovane G, Muto P, Botti G, Perdonà S, Caraglia M, Facchini G. Testicular cancer from diagnosis to epigenetic factors. Oncotarget 2017; 8:104654-104663. [PMID: 29262668 PMCID: PMC5732834 DOI: 10.18632/oncotarget.20992] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
Testicular cancer (TC) is one of the most common neoplasms that occurs in male and includes germ cell tumors (GCT), sex cord-gonadal stromal tumors and secondary testicular tumors. Diagnosis of TC involves the evaluation of serum tumor markers alpha-fetoprotein, human chorionic gonadotropin and lactate dehydrogenase, but clinically several types of immunohistochemical markers are more useful and more sensitive in GCT, but not in teratoma. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include PLAP, OCT3/4 (POU5F1), NANOG, SOX2, REX1, AP-2γ (TFAP2C) and LIN28. Gene expression in GCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TG-subtypes that reflect the normal developmental switch in primordial germ cells from an under- to normally methylated genome. The main purpose of this review is to illustrate the findings of recent investigations in the classification of male genital organs, the discoveries in the use of prognostic and diagnostic markers and the epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Vanacore
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy.,Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Sabrina Rossetti
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Evzen Amler
- 2nd Faculty of Medicine, Charles University, V Uvalu 84, Prague 5, Czech Republic.,Faculty of Biomedical Engineering, UCEEB, CVUT, Zikova 4, Prague 6, Student Science, H.Podluzi, Prague, Czech Republic
| | - Carlo Buonerba
- Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Giuseppe Di Lorenzo
- Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale'-IRCCS, Napoli, Italy
| | - Alessandro Izzo
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale'-IRCCS, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"- IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| |
Collapse
|
10
|
Chieffi P. New perspective on molecular markers as promising therapeutic targets in germ cell tumors. Intractable Rare Dis Res 2016; 5:137-9. [PMID: 27195201 PMCID: PMC4869583 DOI: 10.5582/irdr.2016.01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/26/2016] [Indexed: 01/28/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and non-seminomas germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the Primordial Germ Cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Seconda Università di Napoli, Caserta, Italy
| |
Collapse
|
11
|
Gan Y, Wang Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J. TDRG1 regulates chemosensitivity of seminoma TCam-2 cells to cisplatin via PI3K/Akt/mTOR signaling pathway and mitochondria-mediated apoptotic pathway. Cancer Biol Ther 2016; 17:741-50. [PMID: 27104982 DOI: 10.1080/15384047.2016.1178425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously identified TDRG1 (testis developmental related gene 1), a novel gene with exclusive expression in testis, promoted the proliferation and progression of cultured human seminoma cells through PI3K/Akt/mTOR signaling. As increasing evidence reveal that aberrant activation of this signaling is involved in cisplatin resistance. Then, in this study, we further explored whether TDRG1 regulated the chemosensitivity of seminoma TCam-2 cells to cisplatin. Our researches showed TDRG1 could regulate the viability of TCam-2 cells following cisplatin treatment in vitro through control of both cell apoptosis and cell cycle. Mechanistically, we observed TDRG1 positively regulated the expression levels of the key elements in PI3K/Akt/mTOR pathway including p-PI3K, p-Akt and p-mTOR and also affected the translocation of nuclear p-Akt in TCam-2 cells during cisplatin treatment. Meanwhile, the levels of Bad, cytochrome c, caspase-9 ratio (activated/total), caspase-3 ratio (activated/total) and cleaved-PARP were negatively modulated by TDRG1, which meant the involvement of mitochondria-mediated apoptotic pathway. Furthermore, we found the effect of TDRG1 knockdown or TDRG1 overexpression could be reversed by IGF-1, a PI3K signaling activator, or LY294002, a inhibitor of this pathway, respectively. Similar effects of TDRG1 on cisplatin chemosensitivity and associated molecular mechanism were also confirmed in vivo by employing xenograft assays. In addition, the positive correlation between TDRG1 and p-PI3K, or p-Akt, was found in tumor tissues from seminoma patients. In conclusion, we uncover that TDRG1 regulates chemosensitivity of TCam-2 cells to cisplatin through PI3K/Akt/mTOR signaling and mitochondria-mediated apoptotic pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Gan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yong Wang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhengyu Tan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jun Zhou
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Riko Kitazawa
- b Department of Diagnostic Pathology , Ehime University Hospital, Shitsukawa , Tōon , Ehime Perfecture , Japan
| | - Xianzhen Jiang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yuxin Tang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jianfu Yang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| |
Collapse
|
12
|
Francis JC, Kolomeyevskaya N, Mach CM, Dietrich JE, Anderson ML. MicroRNAs and Recent Insights into Pediatric Ovarian Cancers. Front Oncol 2013; 3:95. [PMID: 23641362 PMCID: PMC3639433 DOI: 10.3389/fonc.2013.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/07/2013] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most common pediatric gynecologic malignancy. When diagnosed in children, ovarian cancers present unique challenges that differ dramatically from those faced by adults. Here, we review the spectrum of ovarian cancers found in young women and girls and discuss the biology of these diseases. A number of advances have recently shed significant new understanding on the potential causes of ovarian cancer in this unique population. Particular emphasis is placed on understanding how altered expression of non-coding RNA transcripts known as microRNAs play a key role in the etiology of ovarian germ cell and sex cord-stromal tumors. Emerging transgenic models for these diseases are also reviewed. Lastly, future challenges and opportunities for understanding pediatric ovarian cancers, delineating clinically useful biomarkers, and developing targeted therapies are discussed.
Collapse
Affiliation(s)
- Jessica C Francis
- Department of Obstetrics and Gynecology, Baylor College of Medicine Houston, TX, USA
| | | | | | | | | |
Collapse
|