1
|
Hajigholamreza H, Sharifzadeh A, Hassan J, Shokri H, Akbaripazouki A, Pakbin B, Tamai IA. Influence of menthol on biofilm formation, ergosterol content, and cell surface hydrophobicity of Candida glabrata. FEMS Microbiol Lett 2023; 370:fnad065. [PMID: 37429611 DOI: 10.1093/femsle/fnad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Resistance to synthetic antifungals has become one of the leading public health challenges around the world. Accordingly, novel antifungal products like naturally occurring molecules can be one of the potential ways to reach efficient curative approaches to control candidiasis. This work evaluated the effect of menthol on cell surface hydrophobicity (CSH), biofilm formation, growth, and ergosterol content of Candida glabrata, a yeast with a high resistance against antifungal agents. Disc diffusion method (susceptibility to synthetic antifungals), broth micro-dilution method (Susceptibility to menthol), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction assay (biofilm formation), High-performance liquid chromatography (HPLC) technique (ergosterol content), and adherence to n-hexadecane (CSH) were employed to determine the influence of menthol against C. glabrata isolates. The minimum inhibitory concentration (MIC) range of menthol versus C. glabrata was 1250-5000 µg/mL (mean ± SD: 3375 ± 1375 µg/mL). The mean rate of C. glabrata biofilm formation was decreased up to 97.67%, 81.15%, 71.21%, 63.72%, 47.53%, 26.31%, and 0.051% at 625, 1250, 2500, 5000, 10 000, 20 000, and 40 000 µg/mL concentrations, respectively. The percentages of CSH were significant in groups treated with MIC/2 (17.51 ± 5.52%) and MIC/4 (26 ± 5.87%) concentrations of menthol. Also, the percentage changes in membrane ergosterol were 15.97%, 45.34%, and 73.40% at 0.125, 0.25, and 0.5 mg/mL concentrations of menthol, respectively, in comparison with untreated control. The results showed the menthol impact versus sessile and planktonic C. glabrata cells, and the interference with ergosterol content, CSH, and biofilm formation, which made it a potent natural antifungal.
Collapse
Affiliation(s)
- Hamid Hajigholamreza
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1416634793, Iran
| | - Aghil Sharifzadeh
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1416634793, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1416634793, Iran
| | - Hojjatollah Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol 4615664616, Iran
| | - Ali Akbaripazouki
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 1416634793, Iran
| | - Babak Pakbin
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, Sion 2 1950, Switzerland
| | - Iradj Ashrafi Tamai
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1416634793, Iran
| |
Collapse
|
2
|
Karajacob AS, Azizan NB, Al-Maleki ARM, Goh JPE, Loke MF, Khor HM, Ho GF, Ponnampalavanar S, Tay ST. Candida species and oral mycobiota of patients clinically diagnosed with oral thrush. PLoS One 2023; 18:e0284043. [PMID: 37068057 PMCID: PMC10109505 DOI: 10.1371/journal.pone.0284043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Overgrowth of Candida yeasts in the oral cavity may result in the development of oral thrush in immunocompromised individuals. This study analyzed the diversity and richness of the oral mycobiota of patients clinically diagnosed with oral thrush (OT), follow-up of oral thrush patients after antifungal therapy (AT), and healthy controls (HC). Oral rinse and oral swab samples were collected from 38 OT patients, 21 AT patients, and 41 healthy individuals (HC). Pellet from the oral rinse and oral swab were used for the isolation of oral Candida yeasts on Brilliance Candida Agar followed by molecular speciation. ITS1 amplicon sequencing using Illumina MiSeq was performed on DNA extracted from the oral rinse pellet of 16 OT, 7 AT, and 7 HC oral rinse samples. Trimmed sequence data were taxonomically grouped and analyzed using the CLC Microbial Genomics Module workflow. Candida yeasts were isolated at significantly higher rates from oral rinse and swab samples of OT (68.4%, p < 0.001) and AT (61.9%, p = 0.012) patients, as compared to HC (26.8%). Predominance of Candida albicans specifically, was noted in OT (60.5%, p < 0.001) and AT (42.9%, p = 0.006) vs. HC (9.8%), while non-albicans Candida species was dominant in HC. Analysis of oral mycobiota from OT patients showed the presence of 8 phyla, 222 genera, and 309 fungal species. Low alpha diversity (Shannon index, p = 0.006; Chao-1 biased corrected index, p = 0.01), varied beta diversity (Bray-Curtis, p = 0.01986; Jaccard, p = 0.02766; Weighted UniFrac, p = 0.00528), and increased relative abundance of C. albicans (p = 3.18E-02) was significantly associated with the oral mycobiota of OT vs. HC. This study supported that C. albicans is the main etiological agent in oral thrush and highlights the association of fungal biodiversity with the pathophysiology of oral thrush.
Collapse
Affiliation(s)
| | - Nuramirah Binti Azizan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Joanne Pei En Goh
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Min Khor
- Department of Medicine, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Gwo Fuang Ho
- Department of Clinical Oncology, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sasheela Ponnampalavanar
- Department of Medicine, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Overview on the Infections Related to Rare Candida species. Pathogens 2022; 11:pathogens11090963. [PMID: 36145394 PMCID: PMC9505029 DOI: 10.3390/pathogens11090963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Atypical Candida spp. infections are rising, mostly due to the increasing numbers of immunocompromised patients. The most common Candida spp. is still Candida albicans; however, in the last decades, there has been an increase in non-Candida albicans Candida species infections (e.g., Candida glabrata, Candida parapsilosis, and Candida tropicalis). Furthermore, in the last 10 years, the reports on uncommon yeasts, such as Candida lusitaniae, Candida intermedia, or Candida norvegensis, have also worryingly increased. This review summarizes the information, mostly related to the last decade, regarding the infections, diagnosis, treatment, and resistance of these uncommon Candida species. In general, there has been an increase in the number of articles associated with the incidence of these species. Additionally, in several cases, there was a suggestive antifungal resistance, particularly with azoles, which is troublesome for therapeutic success.
Collapse
|
4
|
Sousa BR, Freitas JF, Valeriano CA, Neto LN, Neves RP, Gambarra FF, Gomes TM, da Silva Acioly JC, Lima-Neto RG. Refractory esophagitis caused by Candida nivariensis: second description of this yeast in Brazil and a literature review. Future Microbiol 2022; 17:903-915. [PMID: 35748170 DOI: 10.2217/fmb-2021-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Candida nivariensis caused refractory esophagitis in a 36-year-old Brazilian man coinfected with HIV and Leishmania. A literature review on this rare fungal pathogen is also presented. The diagnosis was made, and pathogen identification was performed using matrix-assisted laser desorption ionization-time of flight mass spectrometry and sequencing of the LSU/26S region. An antifungigram was performed using broth microdilution. A literature search of PubMed was performed. The causative agent, C. nivariensis, was resistant to fluconazole and voriconazole. The patient's condition worsened considerably, and he passed away. This is the second report of this Candida species in Brazil and the first case reported worldwide of refractory esophagitis in a patient coinfected with HIV and Leishmania. The case illustrates the importance of precise identification and antifungal susceptibility testing when isolating this emerging pathogen.
Collapse
Affiliation(s)
- Bruna R Sousa
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| | - Jucieli F Freitas
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| | - Carlos At Valeriano
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| | - Luiz Na Neto
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| | - Rejane P Neves
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| | - Fernanda F Gambarra
- Department of Health, Infectious Diseases Hospital Dr Clementino Fraga, State of Paraíba, Rua Estér Borges Bastos, s/n, Jaguaribe, João Pessoa, 58015-270, Brazil
| | - Tiago M Gomes
- Department of Health, Infectious Diseases Hospital Dr Clementino Fraga, State of Paraíba, Rua Estér Borges Bastos, s/n, Jaguaribe, João Pessoa, 58015-270, Brazil
| | - Jack C da Silva Acioly
- Department of Health, Infectious Diseases Hospital Dr Clementino Fraga, State of Paraíba, Rua Estér Borges Bastos, s/n, Jaguaribe, João Pessoa, 58015-270, Brazil
| | - Reginaldo G Lima-Neto
- Department of Mycology, Postgraduate Program in Fungal Biology, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil.,Department of Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Av Professor Moraes Rêgo, s/n, 50670-901, Brazil
| |
Collapse
|
5
|
Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. J Fungi (Basel) 2021; 8:jof8010014. [PMID: 35049954 PMCID: PMC8781625 DOI: 10.3390/jof8010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
In different regions worldwide, there exists an intra-and inter-regional variability in the rates of resistance to antifungal agents in Candida glabrata, highlighting the importance of understanding the epidemiology and antifungal susceptibility profiles of C. glabrata in each region. However, in some regions, such as Ibero-America, limited data are available in this context. Therefore, in the present study, a systematic review was conducted to determine the antifungal resistance in C. glabrata in Ibero-America over the last five years. A literature search for articles published between January 2015 and December 2020 was conducted without language restrictions, using the PubMed, Embase, Cochrane Library, and LILACS databases. The search terms that were used were "Candida glabrata" AND "antifungal resistance" AND "Country", and 22 publications were retrieved from different countries. The use of azoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, and miconazole) varied between 4.0% and 100%, and that of echinocandins (micafungin, caspofungin, and anidulafungin) between 1.1% and 10.0%. The limited information on this subject in the region of Ibero-America emphasizes the need to identify the pathogens at the species level and perform antifungal susceptibility tests that may lead to the appropriate use of these drugs and the optimal doses in order to avoid the development of antifungal resistance or multi-resistance.
Collapse
|
6
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:pharmaceutics13101529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| |
Collapse
|
7
|
First Report of a Case of Ocular Infection Caused by Purpureocillium lilacinum in Poland. Pathogens 2021; 10:pathogens10081046. [PMID: 34451510 PMCID: PMC8399755 DOI: 10.3390/pathogens10081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
This report describes the first case of an ocular infection induced by Purpureocillium lilacinum in Poland. The patient was a 51-year-old immunocompetent contact lens user who suffered from subacute keratitis and progressive granulomatous uveitis. He underwent penetrating keratoplasty for corneal perforation, followed by cataract surgery due to rapid uveitic cataract. A few weeks later, intraocular lens removal and pars plana vitrectomy were necessary due to endophthalmitis. The patient was treated with topical, systemic, and intravitreal voriconazole with improvement; however, the visual outcome was poor. The pathogen was identified by MALDI-TOF MS.
Collapse
|
8
|
Alobaid K, Asadzadeh M, Bafna R, Ahmad S. First Isolation of Candida nivariensis, an Emerging Fungal Pathogen, in Kuwait. Med Princ Pract 2021; 30:80-84. [PMID: 32927454 PMCID: PMC7923905 DOI: 10.1159/000511553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE C. nivariensis is a rare Candida species which is phenotypically closely related to Candida glabrata and Candida bracarensis. The 3 species form the C. glabrata sensu lato complex. Here, we describe the first isolation and characterization of a C. nivariensis isolate cultured from the tracheal aspirate obtained from a young man in Kuwait. MATERIALS AND METHODS The yeast isolate was initially tested by VITEK 2 followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and multiplex PCR. The identification was confirmed by sequencing of internal transcribed spacer (ITS) region of rDNA. Antifungal susceptibility testing was performed by Etest, and phylogenetic comparison with other international strains was carried out by using MEGA version 7 software. RESULTS The C. nivariensis isolate was misidentified by VITEK 2, but correctly identified by MALDI-TOF MS with updated software and multiplex PCR. The identity was confirmed by sequence comparisons of ITS region of rDNA. Antifungal susceptibility testing revealed high minimum inhibitory concentration (MIC) against fluconazole, but low MICs against amphotericin B and echinocandins. Phylogenetically, our isolate was closely related to Indian isolates. CONCLUSIONS This report extends the geographic distribution of C. nivariensis to the Arabian Peninsula. MALDI-TOF MS with updated software and molecular tests are needed to correctly identify C. nivariensis. Since C. nivariensis may exhibit reduced susceptibility to antifungal agents, accurate identification and antifungal susceptibility testing are essential, particularly for isolates from sterile sites, for optimal patient management.
Collapse
Affiliation(s)
- Khaled Alobaid
- Mycology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait,
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ritu Bafna
- Microbiology Unit, Medical Laboratory Department, Sabah Hospital, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
9
|
Molecular Investigation of Etiologic Agents Causing Vulvovaginal Candidiasis. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.106070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Vulvovaginal candidiasis (VVC) is an ordinary infection caused by Candida species. Meanwhile, a shift towards non-albicans Candida (NAC) species has been detected in VVC patients. Objectives: This study aimed at molecular identification of Candida isolates, causing VVC. Methods: Vaginal secretion samples of 320 non-pregnant vaginitis patients at Shahid Akbar-Abadi Obstetrics and Gynecology Hospital in Tehran (Iran) were collected. Samples were evaluated using mycological and molecular approaches. Vaginitis isolates were analyzed with the PCR using NL1 and NL4 primers, and the D1/D2 region of the large-subunit rRNA gene was amplified and sequenced. Results: In total, 100 Candida isolates were identified from VVC and recurrent vulvovaginal candidiasis (RVVC). Candida albicans was the most frequent (51%), followed by C. glabrata (36%), C. krusei (Pichia kudriavzevii) (8%), and C. kefyr (Kluyveromyces marxianus) (5%). 51 and 49% of isolates had C. albicans and NAC, respectively. Conclusions: Candida albicans and C. glabrata were the most common agents of vulvovaginal candidiasis. NAC spp. (49%) was found as an important agent associated with VVC.
Collapse
|
10
|
Cartier N, Chesnay A, N'diaye D, Thorey C, Ferreira M, Haillot O, Bailly É, Desoubeaux G. Candida nivariensis: Identification strategy in mycological laboratories. J Mycol Med 2020; 30:101042. [PMID: 32919860 DOI: 10.1016/j.mycmed.2020.101042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Candida nivariensis is a cryptic fungal species classified within the Candida glabrata complex. It was described for the first time in 2005 by the means of DNA sequencing. We report a rare case of C. nivariensis deep-seated infection occurring in a 77-year-old man hospitalized for cysto-prostatectomy. Phenotypic testing based on the direct examination and the macroscopic features of the in vitro culture initially suggested C. glabrata species, while MALDI-TOF mass spectrometry enables correct identification. The isolate was found resistant to fluconazole, like in almost 20% of the reported cases. Herein, we present our practical strategy to reliably characterize this rare cryptic species. To date, MALDI-TOF mass spectrometry-based analysis showed very good results for such a purpose.
Collapse
Affiliation(s)
- N Cartier
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France
| | - A Chesnay
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France; CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France
| | - D N'diaye
- Médecine interne et maladies infectieuses, CHRU de Tours, 37044 Tours, France
| | - C Thorey
- Médecine interne et maladies infectieuses, CHRU de Tours, 37044 Tours, France
| | - M Ferreira
- CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France; Pneumologie, CHRU de Tours, 37044 Tours, France
| | - O Haillot
- Urologie, CHRU de Tours, 37044 Tours, France
| | - É Bailly
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France
| | - G Desoubeaux
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France; CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France.
| |
Collapse
|