1
|
Smith HS, Regier DA, Goranitis I, Bourke M, IJzerman MJ, Degeling K, Montgomery T, Phillips KA, Wordsworth S, Buchanan J, Marshall DA. Approaches to Incorporation of Preferences into Health Economic Models of Genomic Medicine: A Critical Interpretive Synthesis and Conceptual Framework. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025:10.1007/s40258-025-00945-0. [PMID: 39832089 DOI: 10.1007/s40258-025-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Genomic medicine has features that make it preference sensitive and amenable to model-based health economic evaluation. Preferences of patients, caregivers, and clinicians related to the uptake and delivery of genomic medicine technologies and services that are not captured in health state utility weights can affect the intervention's cost-effectiveness and budget impact. However, there is currently no established or agreed-on approach for integrating preference information into economic evaluations. The objective of this study was to explore approaches for incorporating preferences into model-based economic evaluations of genomic medicine and to develop a conceptual framework to consider preferences in health economic models. METHODS We conducted a critical interpretive synthesis of published literature guided by the following question: how have preferences been incorporated into model-based economic evaluations of genomic medicine interventions? We integrated findings from the literature and expert opinion to develop a conceptual framework of ways in which preferences influence economic value in the context of genomic medicine. RESULTS Our synthesis included 14 articles. Revealed and stated preference data were used to estimate choice probabilities and to value outcomes. Our conceptual framework situates preference data in the context of health system, patient, clinician, and family characteristics. Preference data were sourced from clinicians, patients and families impacted by a condition or intervention, and the general public. Evaluations employed various types of models, including discrete event simulation, microsimulation, Markov, and decision tree models. CONCLUSION When evaluating the broad benefits and costs of implementing new interventions, sufficiently accounting for preferences in the form of model inputs and valuation of outcomes in economic evaluations is important to avoid biased implementation decisions. Incorporation of preference data may improve alignment between predicted and real-world uptake and more accurately estimate welfare impacts, and this study provides critical insights to support researchers who seek to incorporate preference information into model-based health economic evaluations.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive Suite 401, Boston, MA, USA, 02215.
| | - Dean A Regier
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Ilias Goranitis
- Melbourne Health Economics, Centre for Health Policy, University of Melbourne, Melbourne, Australia
| | - Mackenzie Bourke
- Melbourne Health Economics, Centre for Health Policy, University of Melbourne, Melbourne, Australia
| | - Maarten J IJzerman
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Erasmus School of Health Policy and Management, Rotterdam, The Netherlands
| | - Koen Degeling
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Taylor Montgomery
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive Suite 401, Boston, MA, USA, 02215
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Fransisco, CA, USA
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - James Buchanan
- Health Economics and Policy Research Unit (HEPRU), Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | |
Collapse
|
2
|
Chitoran E, Bohiltea RE, Rotaru V, Durdu CE, Mitroiu MN, Simion L. Gynecological Insights into Lynch Syndrome-A Comprehensive Review of Cancer Screening and Prevention. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2013. [PMID: 39768893 PMCID: PMC11728026 DOI: 10.3390/medicina60122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Lynch syndrome, one of the most common genetic syndromes predisposing to cancer, is associated with a series of malignant conditions, among which the most frequent is colorectal cancer, but gynecologic cancers (especially endometrial) are also quite common. Despite the significant progress made in understanding this condition over time, there are still aspects in managing this condition that have not demonstrated clear benefits. This article aims to summarize the recommendations of international societies and present the latest developments in managing Lynch syndrome, focusing on gynecologic cancer screening and possible prevention strategies. Advances in genetic testing procedures and discoveries related to the association between oncological pathology frequency and the affected pathogenic variant type will probably lead to personalized medicine focused on the individual patient in the coming years. Although various screening methods for gynecological cancers in patients with Lynch syndrome have been used over time, they have not shown significant survival benefits. This highlights the need for studying and implementing new screening and diagnostic methods, which have been under investigation in recent years and are mentioned in this article.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.C.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Roxana-Elena Bohiltea
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.C.)
- Obstetrics, Gynecology and Neonatology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.C.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristiana-Elena Durdu
- Obstetrics, Gynecology and Neonatology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Madalina-Nicoleta Mitroiu
- Obstetrics, Gynecology and Neonatology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.C.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
3
|
Kanbergs A, Rauh-Hain JA, Wilke RN. Differential Receipt of Genetic Services Among Patients With Gynecologic Cancer and Their Relatives: A Review of Challenges to Health Equity. Clin Obstet Gynecol 2024; 67:666-671. [PMID: 39331025 DOI: 10.1097/grf.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Up to 14% of endometrial cancers and 23% of epithelial ovarian cancers are associated with genetic predispositions. Referral for genetic testing and counseling can significantly impact a patient's oncologic outcomes. However, significant disparities in genetic referral and testing exist within medically underserved and minority populations in the United States. These disparities in care and access to care are multifactorial, often involving patient-level, health care-level, and system-level factors. In this review, we focus on disparities in genetic testing among patients with ovarian and uterine cancer, and the missed opportunities for primary cancer prevention among their relatives.
Collapse
Affiliation(s)
- Alexa Kanbergs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
4
|
Yousif A, Mulla ZD, Pudar J, Elshaikh M, Khalil-Moawad R, Elshaikh MA. First-degree family history of cancers in patients with stage I endometrial carcinoma. Prevalence and prognostic impact. Arch Gynecol Obstet 2024; 310:2595-2602. [PMID: 39327297 DOI: 10.1007/s00404-024-07728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND We aimed to study the impact of first-degree family history on patients with endometrial cancer. METHODS We conducted a retrospective chart review from January 1990 to June 2016, comparing stage I endometrial cancer patients with and without a sporadic family history of cancers. We collected the patients' demographic information, tumor characteristics, and treatment plans. During the follow-up period, patient information on tumor recurrence and survival was collected. The chi-square test was used to assess the associations between categorical variables. The Cox proportional hazards regression model was used to estimate multivariate-adjusted hazard ratios (95% confidence interval (CI)). RESULTS Among the 1737 patients with stage I endometrial cancer, 709 had a positive first-degree family history of cancers and 1028 had negative family history (FH) of cancers. Patients with positive FH were more likely to be older, have stage IB disease, and receive adjuvant radiotherapy; however, the difference was not statistically significant. At 5 years follow up, patients with a positive family history had longer time to recurrence (TTR) than their negative FH counterparts. Maternal family history of cancer was the most common, followed by a sister's history of cancer, paternal history, brother's history, and offspring history of cancer. Breast, endometrial, and colon cancers are the most common cancers among first-degree relatives. CONCLUSION Endometrial cancer patients with sporadic first-degree FH of cancers share similar demographics and tumor characteristics compared to their counterpart with slightly increased likelihood to be older, with stage IB disease and have a longer TTR compared to their negative counterpart.
Collapse
Affiliation(s)
- Abdelrahman Yousif
- Department of Obstetrics and Gynecology Department, Texas Tech University Health Sciences Center El Paso, 4801 Alberta Ave, El Paso, TX, 79905, USA.
| | - Zuber D Mulla
- Department of Obstetrics and Gynecology Department, Texas Tech University Health Sciences Center El Paso, 4801 Alberta Ave, El Paso, TX, 79905, USA
- Office of Faculty Development, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Julia Pudar
- Department of Obstetrics and Gynecology, Michigan College of Human Medicine, Grand Rapids, Michigan, 49503, USA
| | - Muneer Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Center, Detroit, MI, 48202, USA
| | | | - Mohamed A Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Center, Detroit, MI, 48202, USA
| |
Collapse
|
5
|
Snowsill TM, Coelho H, Morrish NG, Briscoe S, Boddy K, Smith T, Crosbie EJ, Ryan NA, Lalloo F, Hulme CT. Gynaecological cancer surveillance for women with Lynch syndrome: systematic review and cost-effectiveness evaluation. Health Technol Assess 2024; 28:1-228. [PMID: 39246007 PMCID: PMC11403379 DOI: 10.3310/vbxx6307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Background Lynch syndrome is an inherited condition which leads to an increased risk of colorectal, endometrial and ovarian cancer. Risk-reducing surgery is generally recommended to manage the risk of gynaecological cancer once childbearing is completed. The value of gynaecological colonoscopic surveillance as an interim measure or instead of risk-reducing surgery is uncertain. We aimed to determine whether gynaecological surveillance was effective and cost-effective in Lynch syndrome. Methods We conducted systematic reviews of the effectiveness and cost-effectiveness of gynaecological cancer surveillance in Lynch syndrome, as well as a systematic review of health utility values relating to cancer and gynaecological risk reduction. Study identification included bibliographic database searching and citation chasing (searches updated 3 August 2021). Screening and assessment of eligibility for inclusion were conducted by independent researchers. Outcomes were prespecified and were informed by clinical experts and patient involvement. Data extraction and quality appraisal were conducted and results were synthesised narratively. We also developed a whole-disease economic model for Lynch syndrome using discrete event simulation methodology, including natural history components for colorectal, endometrial and ovarian cancer, and we used this model to conduct a cost-utility analysis of gynaecological risk management strategies, including surveillance, risk-reducing surgery and doing nothing. Results We found 30 studies in the review of clinical effectiveness, of which 20 were non-comparative (single-arm) studies. There were no high-quality studies providing precise outcome estimates at low risk of bias. There is some evidence that mortality rate is higher for surveillance than for risk-reducing surgery but mortality is also higher for no surveillance than for surveillance. Some asymptomatic cancers were detected through surveillance but some cancers were also missed. There was a wide range of pain experiences, including some individuals feeling no pain and some feeling severe pain. The use of pain relief (e.g. ibuprofen) was common, and some women underwent general anaesthetic for surveillance. Existing economic evaluations clearly found that risk-reducing surgery leads to the best lifetime health (measured using quality-adjusted life-years) and is cost-effective, while surveillance is not cost-effective in comparison. Our economic evaluation found that a strategy of surveillance alone or offering surveillance and risk-reducing surgery was cost-effective, except for path_PMS2 Lynch syndrome. Offering only risk-reducing surgery was less effective than offering surveillance with or without surgery. Limitations Firm conclusions about clinical effectiveness could not be reached because of the lack of high-quality research. We did not assume that women would immediately take up risk-reducing surgery if offered, and it is possible that risk-reducing surgery would be more effective and cost-effective if it was taken up when offered. Conclusions There is insufficient evidence to recommend for or against gynaecological cancer surveillance in Lynch syndrome on clinical grounds, but modelling suggests that surveillance could be cost-effective. Further research is needed but it must be rigorously designed and well reported to be of benefit. Study registration This study is registered as PROSPERO CRD42020171098. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR129713) and is published in full in Health Technology Assessment; Vol. 28, No. 41. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
| | - Helen Coelho
- Peninsula Technology Assessment Group, University of Exeter, Exeter, UK
| | - Nia G Morrish
- Health Economics Group, University of Exeter, Exeter, UK
| | - Simon Briscoe
- Exeter Policy Research Programme Evidence Review Facility, University of Exeter, Exeter, UK
| | - Kate Boddy
- NIHR Collaborations for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
| | | | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Neil Aj Ryan
- The Academic Women's Health Unit, University of Bristol, Bristol, UK
- Department of Obstetrics and Gynaecology, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Claire T Hulme
- Health Economics Group, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Lengkey R, Soetadji R, Sanjaya A. Use of angiotensin‑converting enzyme inhibitors in gynecological cancers: Pathways and mechanisms involved (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:48. [DOI: 10.3892/wasj.2024.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Roland Lengkey
- Department of Obstetrics and Gynecology, Unggul Karsa Medika Hospital, Maranatha Christian University, Bandung, West Java 40218, Indonesia
| | - Ray Soetadji
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
7
|
Kato MK, Fujii E, Asami Y, Momozawa Y, Hiranuma K, Komatsu M, Hamamoto R, Ebata T, Matsumoto K, Ishikawa M, Kohno T, Kato T, Yoshida H, Shiraishi K. Clinical features and impact of p53 status on sporadic mismatch repair deficiency and Lynch syndrome in uterine cancer. Cancer Sci 2024; 115:1646-1655. [PMID: 38433331 PMCID: PMC11093186 DOI: 10.1111/cas.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
The clinical features of sporadic mismatch repair deficiency (MMRd) and Lynch syndrome (LS) in Japanese patients with endometrial cancer (EC) were examined by evaluating the prevalence and prognostic factors of LS and sporadic MMRd in patients with EC. Targeted sequencing of five LS susceptibility genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) was carried out in 443 patients with EC who were pathologically diagnosed with EC at the National Cancer Center Hospital between 2011 and 2018. Pathogenic variants in these genes were detected in 16 patients (3.7%). Immunohistochemistry for MMR proteins was undertaken in 337 of the 433 (77.9%) EC patients, and 91 patients (27.0%) showed absent expression of at least one MMR protein. The 13 cases of LS with MMR protein loss (93.8%) showed a favorable prognosis with a 5-year overall survival (OS) rate of 100%, although there was no statistically significant difference between this group and the sporadic MMRd group (p = 0.27). In the MMRd without LS group, the 5-year OS rate was significantly worse in seven patients with an aberrant p53 expression pattern than in those with p53 WT (53.6% vs. 93.9%, log-rank test; p = 0.0016). These results suggest that p53 abnormalities and pathogenic germline variants in MMR genes could be potential biomarkers for the molecular classification of EC with MMRd.
Collapse
Affiliation(s)
- Mayumi Kobayashi Kato
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Erisa Fujii
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Yuka Asami
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Kengo Hiranuma
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Masaaki Komatsu
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Ryuji Hamamoto
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Takahiro Ebata
- Department of Epigenomics, Life Science Tokyo Advanced Research CenterHoshi UniversityTokyoJapan
| | - Koji Matsumoto
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Mitsuya Ishikawa
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Takashi Kohno
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Tomoyasu Kato
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Hiroshi Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Kouya Shiraishi
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
8
|
Santoro A, Bragantini E, Castiglione F, Ganesan R, Matias-Guiu X, Frattini M, Gallotta V, Garcia P, Pattni Y, Tsiampali-Laprell J, Bisaro B, Barbareschi M, Zannoni GF. Biomarker characterization in endometrial cancer in Europe: first survey data analysis from 69 pathological academic and hospital labs. Pathologica 2024; 116:32-45. [PMID: 38482673 PMCID: PMC10938279 DOI: 10.32074/1591-951x-926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/21/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Endometrial carcinoma (EC) is the commonest gynecological cancer affecting women in Western populations. To predict patient risk, the 2020 edition of the World Health Organization (WHO) Classification of Tumors of the Female Genital Tract stressed the importance of integrated histo-molecular classification of the disease. This survey analysis poses attention on the most frequently used immunohistochemical and molecular markers adopted in daily categorization of ECs in European laboratories. Methods We analyzed data collected through questionnaires administered to 40 Italian, 20 Spanish, 3 Swiss and 6 United Kingdom (UK) laboratories. We collected information regarding daily practice in EC evaluation, specifically concerning mismatch repair status (MMR) and microsatellite instability (MSI). Summary and descriptive statistical analyses were carried out to evaluate the current practice of each laboratory. Results The results show that MMR status is mainly evaluated by using immunohistochemistry (IHC) on most EC samples. The most frequent approach for the analysis of MMR status is IHC of four proteins (PMS2, MSH6, MSH2, MLH1). MSI analysis by molecular methods is uncommon but useful as a supplemental tool in specific conditions. MLH1 promoter hypermethylation and BRAF V600 mutations analysis are performed in case of negative expression of MLH1/PMS2. Other markers (mainly p53 followed by POLE and PTEN) are investigated in particular in Spain and Switzerland in a consistent number of cases. Conclusion Guidelines consultation and standardization of laboratory procedures are efficient means for EC prognostic risk stratification and improving the quality of care.
Collapse
Affiliation(s)
- Angela Santoro
- Department of Women, Children and Public Health Sciences, General Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Raji Ganesan
- Department of Cellular Pathology, Birmingham Women’s and Childrens Hospital, Birmingham, UK
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital U de Bellvitge and Hospital U Arnau de Vilanova, Universities of Lleida and Barcelona, Institut de Recerca Biomèdica de Lleida, Instituto de Investigación Biomédica de Bellvitge, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain
| | - Milo Frattini
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), Locarno, Italy
| | - Valerio Gallotta
- Department of Women, Children and Public Health Sciences, Oncological Gynecology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sorokin M, Rabushko E, Efimov V, Poddubskaya E, Sekacheva M, Simonov A, Nikitin D, Drobyshev A, Suntsova M, Buzdin A. Experimental and Meta-Analytic Validation of RNA Sequencing Signatures for Predicting Status of Microsatellite Instability. Front Mol Biosci 2021; 8:737821. [PMID: 34888350 PMCID: PMC8650122 DOI: 10.3389/fmolb.2021.737821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker. In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors, MSI is routinely detected by the size of marker polymerase chain reaction products encompassing frequent microsatellite expansion regions. Alternatively, MSI status is screened indirectly by immunohistochemical interrogation of microsatellite binding proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene products with only one common gene. However, they were developed and tested on the incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated experimentally on independent RNAseq samples. In this study, we, for the first time, systematically validated these three RNAseq MSI signatures on the literature colorectal cancer (CRC) (n = 619), endometrial carcinoma (n = 533), gastric cancer (n = 380), uterine carcinosarcoma (n = 55), and esophageal cancer (n = 83) samples and on the set of experimental CRC RNAseq samples (n = 23) for tumors with known MSI status. We found that all three signatures performed well with area under the curve (AUC) ranges of 0.94-1 for the experimental CRCs and 0.94-1 for the TCGA CRC, esophageal cancer, and uterine carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric cancer samples, only two signatures were effective with AUC 0.91-0.97, whereas the third signature showed a significantly lower AUC of 0.69-0.88. Software for calculating these MSI signatures using RNAseq data is included.
Collapse
Affiliation(s)
- Maksim Sorokin
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
| | - Elizaveta Rabushko
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victor Efimov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Simonov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Daniil Nikitin
- Oncobox Ltd., Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Aleksey Drobyshev
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|