1
|
Hanurry EY, Birhan YS, Darge HF, Mekonnen TW, Arunagiri V, Chou HY, Cheng CC, Lai JY, Tsai HC. PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomater Sci Eng 2022; 8:2403-2418. [PMID: 35649177 DOI: 10.1021/acsbiomaterials.2c00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs. The stepwise conjugation of moieties and drug load was confirmed by various techniques. In vitro experimental results demonstrated that PAMAM dendritic nanoparticles loaded with a combination of drugs exhibited spherical nanosized particles, facilitated the sustained release of drugs, enhanced cellular uptake, mitigated cell viability, and induced apoptosis. The incorporation of PAB-DOX/IND nanoparticles into thermosensitive hydrogels also revealed the formation of a gel state at a physiological temperature and further a robust sustained release of drugs at the tumor microenvironment. Local injection of this formulation into HeLa cell-grafted mice significantly suppressed tumor growth, induced immunogenic cell death-associated cytokines, reduced cancer cell proliferation, and triggered a CD8+ T-cell-mediated immune response without obvious systemic toxicity, which indicates a synergistic ICD effect and reverse of immunosuppression. Hence, the localized delivery of immunochemotherapeutic drugs by a PAMAM dendritic nanoparticle-incorporated hydrogel could provide a promising strategy to enhance antitumor activity in cancer therapy.
Collapse
Affiliation(s)
- Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.,Department of Chemical Engineering & Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
2
|
Nair A, Bu J, Bugno J, Rawding PA, Kubiatowicz LJ, Jeong WJ, Hong S. Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules 2021; 22:3746-3755. [PMID: 34319087 DOI: 10.1021/acs.biomac.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendron micelles have shown promising results as a multifunctional delivery system, owing to their unique molecular architecture. Herein, we have prepared a novel poly(amidoamine) (PAMAM) dendron-lipid hybrid nanoparticle (DLNP) as a nanocarrier for drug/gene co-delivery and examined how the dendron generation of DLNPs impacts their cargo-carrying capabilities. DLNPs, formed by a thin-layer hydration method, were internally loaded with chemo-drugs and externally complexed with plasmids. Compared to generation 2 dendron DLNP (D2LNPs), D3LNPs demonstrated a higher drug encapsulation efficiency (31% vs 87%) and better gene complexation (minimal N/P ratio of 20:1 vs 5:1 for complexation) due to their smaller micellar aggregation number and higher charge density, respectively. Furthermore, D3LNPs were able to avoid endocytosis and subsequent lysosomal degradation and demonstrated a higher cellular uptake than D2LNPs. As a result, D3LNPs exhibited significantly enhanced antitumor and gene transfection efficacy in comparison to D2LNPs. These findings provide design cues for engineering multifunctional dendron-based nanotherapeutic systems for effective combination cancer treatment.
Collapse
Affiliation(s)
- Ashita Nair
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States
| | - Piper A Rawding
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Luke J Kubiatowicz
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Woo-Jin Jeong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seungpyo Hong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States.,Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Chang E, Bu J, Ding L, Lou JWH, Valic MS, Cheng MHY, Rosilio V, Chen J, Zheng G. Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy. J Nanobiotechnology 2021; 19:154. [PMID: 34034749 PMCID: PMC8147067 DOI: 10.1186/s12951-021-00898-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/15/2021] [Indexed: 01/09/2023] Open
Abstract
Background Porphyrin-lipids are versatile building blocks that enable cancer theranostics and have been applied to create several multimodal nanoparticle platforms, including liposome-like porphysome (aqueous-core), porphyrin nanodroplet (liquefied gas-core), and ultrasmall porphyrin lipoproteins. Here, we used porphyrin-lipid to stabilize the water/oil interface to create porphyrin-lipid nanoemulsions with paclitaxel loaded in the oil core (PLNE-PTX), facilitating combination photodynamic therapy (PDT) and chemotherapy in one platform. Results PTX (3.1 wt%) and porphyrin (18.3 wt%) were loaded efficiently into PLNE-PTX, forming spherical core–shell nanoemulsions with a diameter of 120 nm. PLNE-PTX demonstrated stability in systemic delivery, resulting in high tumor accumulation (~ 5.4 ID %/g) in KB-tumor bearing mice. PLNE-PTX combination therapy inhibited tumor growth (78%) in an additive manner, compared with monotherapy PDT (44%) or chemotherapy (46%) 16 days post-treatment. Furthermore, a fourfold reduced PTX dose (1.8 mg PTX/kg) in PLNE-PTX combination therapy platform demonstrated superior therapeutic efficacy to Taxol at a dose of 7.2 mg PTX/kg, which can reduce side effects. Moreover, the intrinsic fluorescence of PLNE-PTX enabled real-time tracking of nanoparticles to the tumor, which can help inform treatment planning. Conclusion PLNE-PTX combining PDT and chemotherapy in a single platform enables superior anti-tumor effects and holds potential to reduce side effects associated with monotherapy chemotherapy. The inherent imaging modality of PLNE-PTX enables real-time tracking and permits spatial and temporal regulation to improve cancer treatment. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00898-1.
Collapse
Affiliation(s)
- Enling Chang
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Lili Ding
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Jenny W H Lou
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael S Valic
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Miffy H Y Cheng
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Véronique Rosilio
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, PMCRT 5-353, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Institute of Biomedical Engineering, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|