1
|
Dąbrowska J, Groblewska M, Bendykowska M, Sikorski M, Gromadzka G. Effective Laboratory Diagnosis of Parasitic Infections of the Gastrointestinal Tract: Where, When, How, and What Should We Look For? Diagnostics (Basel) 2024; 14:2148. [PMID: 39410552 PMCID: PMC11475984 DOI: 10.3390/diagnostics14192148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Introduction: Gastrointestinal parasites (GIPs) are one of the most common causes of disease in the world. Clinical diagnosis of most parasitic diseases is difficult because they do not produce characteristic symptoms. (2) Methods: The PubMed, Science Direct, and Wiley Online Library medical databases were reviewed using the following phrases: "parasitic infections and diagnostics", "intestinal parasites", "gastrointestinal parasites", "parasitic infections and diagnostics", and their combinations. (3) Results and Conclusions: Correct diagnosis of GIP involves determining the presence of a parasite and establishing a relationship between parasite invasion and disease symptoms. The diagnostic process should consider the possibility of the coexistence of infection with several parasites at the same time. In such a situation, diagnostics should be planned with consideration of their frequency in each population and the local epidemiological situation. The importance of the proper interpretation of laboratory test results, based on good knowledge of the biology of the parasite, should be emphasized. The presence of the parasite may not be causally related to the disease symptoms. Due to wide access to laboratories, patients often decide to perform tests themselves without clinical justification. Research is carried out using various methods which are often unreliable. This review briefly covers current laboratory methods for diagnosing the most common gastrointestinal parasitic diseases in Europe. In particular, we provide useful information on the following aspects: (i) what to look for and where to look for it (suitability of feces, blood, duodenal contents, material taken from endoscopy or biopsy, tissue samples, and locations for searching for eggs, cysts, parasites, parasite genetic material, and characteristics of immune responses indicating parasitic infections); (ii) when material should be collected for diagnosis and/or to check the effectiveness of treatment; (iii) how-that is, by what methods-laboratory diagnostics should be carried out. Here, the advantages and disadvantages of direct and indirect methods of detecting parasites will be discussed. False-positive or false-negative results are a problem facing many tests. Available tests have different sensitivities and specificities. Therefore, especially in doubtful situations, tests for the presence of the pathogen should be performed using various available methods. It is important that the methods used make it possible to distinguish an active infection from a past infection. Finally, we present laboratory "case reports", in which we will discuss the diagnostic procedure that allows for the successful identification of parasites. Additionally, we briefly present the possibilities of using artificial intelligence to improve the effectiveness of diagnosing parasitic diseases.
Collapse
Affiliation(s)
- Julia Dąbrowska
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Maria Groblewska
- Student Scientific Association, Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Maria Bendykowska
- Immunis Student Scientific Association, Cardinal Stefan Wyszynski University, ul. Dewajtis 5, 01-815 Warsaw, Poland
| | - Maksymilian Sikorski
- Immunis Student Scientific Association, Cardinal Stefan Wyszynski University, ul. Dewajtis 5, 01-815 Warsaw, Poland
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
2
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
3
|
Nigo MM, Odermatt P, Salieb–Beugelaar GB, Morozov O, Battegay M, Hunziker PR. Epidemiology of Schistosoma mansoni infection in Ituri Province, north-eastern Democratic Republic of the Congo. PLoS Negl Trop Dis 2021; 15:e0009486. [PMID: 34855748 PMCID: PMC8638996 DOI: 10.1371/journal.pntd.0009486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Schistosomiasis, caused by Schistosoma mansoni, is of great significance to public health in sub-Saharan Africa. In the Democratic Republic of Congo (DRC), information on the burden of S. mansoni infection is scarce, which hinders the implementation of adequate control measures. We assessed the geographical distribution of S. mansoni infection across Ituri province in north-eastern DRC and determined the prevailing risk factors. METHODS/PRINCIPAL FINDINGS Two province-wide, community-based studies were conducted. In 2016, a geographical distribution study was carried out in 46 randomly selected villages across Ituri. In 2017, an in-depth study was conducted in 12 purposively-selected villages, across the province. Households were randomly selected, and members were enrolled. In 2016, one stool sample was collected per participant, while in 2017, several samples were collected per participant. S. mansoni eggs were detected using the Kato-Katz technique. In 2017, a point-of-care circulating cathodic S. mansoni antigen (POC-CCA) urine test was the second used diagnostic approach. Household and individual questionnaires were used to collect data on demographic, socioeconomic, environmental, behavioural and knowledge risk factors. Of the 2,131 participants in 2016, 40.0% were positive of S. mansoni infection. Infection prevalence in the villages ranged from 0 to 90.2%. Of the 707 participants in 2017, 73.1% were tested positive for S. mansoni. Prevalence ranged from 52.8 to 95.0% across the health districts visited. Infection prevalence increased from north to south and from west to east. Exposure to the waters of Lake Albert and the villages' altitude above sea level were associated with the distribution. Infection prevalence and intensity peaked in the age groups between 10 and 29 years. Preschool children were highly infected (62.3%). Key risk factors were poor housing structure (odds ratio [OR] 2.1, 95% 95% confidence interval [CI] 1.02-4.35), close proximity to water bodies (OR 1.72, 95% CI 1.1-2.49), long-term residence in a community (OR 1.41, 95% CI 1.11-1.79), lack of latrine in the household (OR 2.00, 95% CI 1.11-3.60), and swimming (OR 2.53, 95% CI 1.20-5.32) and washing (OR 1.75, 95% CI 1.10-2.78) in local water bodies. CONCLUSIONS/SIGNIFICANCE Our results show that S. mansoni is highly endemic and a major health concern in Ituri province, DRC. Infection prevalence and intensity, and the prevailing socioeconomic, environmental, and behavioural risk factors in Ituri reflect intense exposure and alarming transmission rates. A robust plan of action is urgently needed in the province.
Collapse
Affiliation(s)
- Maurice M. Nigo
- Nanomedicine Translation Group, Intensive Care Unit, University Hospital Basel, University of Basel, Basel, Switzerland
- CLINAM–European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institut Supérieur des Techniques Médicales (ISTM) Nyankunde, Bunia, Democratic Republic of Congo
| | - Peter Odermatt
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Georgette B. Salieb–Beugelaar
- Nanomedicine Translation Group, Intensive Care Unit, University Hospital Basel, University of Basel, Basel, Switzerland
- CLINAM–European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Oleksii Morozov
- Nanomedicine Translation Group, Intensive Care Unit, University Hospital Basel, University of Basel, Basel, Switzerland
- CLINAM–European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manuel Battegay
- University of Basel, Basel, Switzerland
- Department of Infectiology & Hospital Hygiene, University Hospital Basel, Basel, Switzerland
| | - Patrick R. Hunziker
- Nanomedicine Translation Group, Intensive Care Unit, University Hospital Basel, University of Basel, Basel, Switzerland
- CLINAM–European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Nigo MM, Odermatt P, Nigo DW, Salieb-Beugelaar GB, Battegay M, Hunziker PR. Morbidity associated with Schistosoma mansoni infection in north-eastern Democratic Republic of the Congo. PLoS Negl Trop Dis 2021; 15:e0009375. [PMID: 34855763 PMCID: PMC8638987 DOI: 10.1371/journal.pntd.0009375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reducing morbidity is the main target of schistosomiasis control efforts, yet only rarely do control programmes assess morbidity linked to Schistosoma sp. infection. In the Democratic Republic of Congo (DRC), and particularly in north-eastern Ituri Province, little is known about morbidity associated with Schistosoma mansoni infection. For this reason, we aimed to assess intestinal and hepatosplenic morbidity associated with S. mansoni infection in Ituri Province. METHODS/PRINCIPAL FINDINGS In 2017, we conducted a cross-sectional study in 13 villages in Ituri Province, DRC. S. mansoni infection was assessed with a Kato-Katz stool test (2 smears) and a point-of-care circulating cathodic antigen (POC-CCA) urine test. A questionnaire was used to obtain demographic data and information about experienced intestinal morbidity. Each participant underwent an abdominal ultrasonography examination to diagnose hepatosplenic morbidity. Of the 586 study participants, 76.6% tested positive for S. mansoni. Intestinal morbidity reported in the two preceding weeks was very frequent, and included abdominal pain (52.7%), diarrhoea (23.4%) and blood in the stool (21.5%). Hepatosplenic morbidity consisted of abnormal liver parenchyma patterns (42.8%), hepatomegaly (26.5%) and splenomegaly (25.3%). Liver pathology (adjusted odds ratio [aOR] 1.20, 95% confidence interval [CI] 1.06-1.37, p = 0.005) was positively and significantly associated with S. mansoni infection. Hepatomegaly (aOR 1.52, 95% CI 0.99-2.32, p = 0.053) and splenomegaly (aOR 1.12, 95% CI 0.73-1.72, p = 0.619) were positively but not significantly associated with S. mansoni infection at the individual level. At the village level, S. mansoni prevalence was positively associated with the prevalence of hepatomegaly and splenomegaly. High-intensity S. mansoni infections were associated with diarrhoea, blood in the stool, hepatomegaly, splenomegaly, and liver parenchyma (C, D, E and F pathology patterns). Four study participants were diagnosed with ascites and five reported hematemesis. CONCLUSIONS/SIGNIFICANCE Our study documents a high burden of intestinal and hepatosplenic morbidity associated with S. mansoni infection status in Ituri Province. The findings call for targeted interventions to address both S. mansoni infection and related morbidity.
Collapse
Affiliation(s)
- Maurice M. Nigo
- Nanomedicine Translation Group, Medical Intensive Care Clinic, University Hospital Basel University of Basel, Basel, Switzerland
- CLINAM—European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institut Supérieur des Techniques Médicales (ISTM) Nyankunde, Democratic Republic of Congo
| | - Peter Odermatt
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - David Wully Nigo
- Centre Hospitalier, Ingbokolo Town, Democratic Republic of Congo
| | - Georgette B. Salieb-Beugelaar
- Nanomedicine Translation Group, Medical Intensive Care Clinic, University Hospital Basel University of Basel, Basel, Switzerland
- CLINAM—European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manuel Battegay
- University of Basel, Basel, Switzerland
- Department of Infectiology & Hospital Hygiene, University Hospital Basel, Basel, Switzerland
| | - Patrick R. Hunziker
- Nanomedicine Translation Group, Medical Intensive Care Clinic, University Hospital Basel University of Basel, Basel, Switzerland
- CLINAM—European Foundation for Clinical Nanomedicine, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Precision Nanomedicine Vol. 3, Issue 1 Table of Contents. PRECISION NANOMEDICINE 2020. [DOI: 10.33218/prnano3(1).toc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hunziker P. et al.: Schistosomiasis: from established diagnostic assays to emerging micro/nanotechnology-based rapid field testing for clinical management and epidemiology Precis. Nanomed. 2020 January;3(1):439-458 POTENTIAL CLINICAL SIGNIFICANCE Abstract Schistosomiasis is a neglected invasive worm disease with a huge disease burden in developing countries, particularly in children, and is seen increasingly in non-endemic regions through transfer by travellers, expatriates, and refugees. Undetected and untreated infections may be responsible for the persistence of transmission. Rapid and accurate diagnosis is the key to treatment and control. So far, parasitological detection methods remain the cornerstone of Schistosoma infection diagnosis in endemic regions, but conventional tests have limited sensitivity, in particular in low-grade infection. Recent advances contribute to improved detection in clinical and field settings. The recent progress in micro- and nanotechnologies opens a road by enabling the design of new miniaturized point-of-care devices and analytical platforms, which can be used for the rapid detection of these infections. This review starts with an overview of currently available laboratory tests and their Atyabi F. et al.: The Effect of Fibronectin Coating on Protein Corona Structure and Cellular Uptake of Single-Walled Carbon Nanotubes, Precis. Nanomed. 2020 January;3(1):459-470 BASIC SCIENCE Abstract Protein coating, as an outstanding surface modification strategy, influence the organization of biomolecules in the interface of nanomaterials. In the present study, fibronectin (FN) was used to modify the surface chemistry of single-walled carbon nanotubes (SWNTs) and carboxylated SWNTs (CO2-SWNTs) to analyze its effects on the protein corona composition and cellular uptake. At first, the successful coating of FN on the surface of both SWNTs was confirmed by transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that the biomolecular organization of SWNTs and CO2-SWNTs coronas was changed after FN coating based on the evidence obtained from the surface plasmon intensity of the samples. Moreover, the MTT assay and confocal microscopy imaging revealed less cytotoxicity and cellular uptake of SWNTs coronas in comparison to bulk samples, respectively. It is suggested that protein coating of SWNTs can modify the corona pattern and consequently the biological behavior of carbon nanotubes. Eichenberger RM, Toth I et al.: Development of natural and unnatural amino acid delivery systems against hookworm infection, Precis. Nanomed. 2020 January;3(1):471-482 POTENTIAL CLINICAL SIGNIFICANCE Abstract Peptide-based vaccines consist of short antigen fragments derived from a specific pathogen. Alone, these peptide fragments are poorly or non-immunogenic; however, when incorporated into a proper delivery system, they can trigger strong immune responses. To eliminate the need for toxic and often ineffective oral adjuvants, we designed single molecule-based self-adjuvating vaccines against hookworms using natural and unnatural hydrophobic amino acids. Two vaccine conjugates were synthesized, consisting of B-cell epitope p3, derived from the hookworm Na-APR-1 protein; universal T-helper peptide P25; and either double copies of unnatural lipoamino acid (2-amino-D,L-eicosanoic acid), or ten copies of the natural amino acid leucine. After challenge with the model hookworm, Nippostrongylus brasiliensis, mice orally immunized with the conjugates, but without adjuvant, generated antibody responses against the hookworm epitope, resulting in significantly reduced worm and egg burdens compared to control mice. We have demonstrated that vaccine nanoparticles composed exclusively of natural amino acids can be effective even when administered orally.
Collapse
|