1
|
Hernandez Vargas S, AghaAmiri S, Ghosh SC, Luciano MP, Borbon LC, Ear PH, Howe JR, Bailey-Lundberg JM, Simonek GD, Halperin DM, Tran Cao HS, Ikoma N, Schnermann MJ, Azhdarinia A. High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Mol Pharm 2022; 19:4241-4253. [PMID: 36174110 PMCID: PMC9830638 DOI: 10.1021/acs.molpharmaceut.2c00583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Michael P. Luciano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Luis C. Borbon
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Po Hien Ear
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - James R. Howe
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Jennifer M. Bailey-Lundberg
- Department
of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Gregory D. Simonek
- Center
for Laboratory Animal Medicine and Care, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United States
| | - Hop S. Tran Cao
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Naruhiko Ikoma
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States,
| |
Collapse
|
2
|
Zheng L. Targeting MEN1-deficient tumors with DHODH inhibitor. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:69. [PMID: 39034953 PMCID: PMC11256604 DOI: 10.1016/j.jncc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Waguespack SG. Beyond the "3 Ps": A critical appraisal of the non-endocrine manifestations of multiple endocrine neoplasia type 1. Front Endocrinol (Lausanne) 2022; 13:1029041. [PMID: 36325452 PMCID: PMC9618614 DOI: 10.3389/fendo.2022.1029041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an autosomal-dominantly inherited tumor syndrome, is classically defined by tumors arising from the "3 Ps": Parathyroids, Pituitary, and the endocrine Pancreas. From its earliest descriptions, MEN1 has been associated with other endocrine and non-endocrine neoplastic manifestations. High quality evidence supports a direct association between pathogenic MEN1 variants and neoplasms of the skin (angiofibromas and collagenomas), adipose tissue (lipomas and hibernomas), and smooth muscle (leiomyomas). Although CNS tumors, melanoma, and, most recently, breast cancer have been reported as MEN1 clinical manifestations, the published evidence to date is not yet sufficient to establish causality. Well-designed, multicenter prospective studies will help us to understand better the relationship of these tumors to MEN1, in addition to verifying the true prevalence and penetrance of the well-documented neoplastic associations. Nevertheless, patients affected by MEN1 should be aware of these non-endocrine manifestations, and providers should be encouraged always to think beyond the "3 Ps" when treating an MEN1 patient.
Collapse
|