1
|
Ząbczyk M, Kruk A, Natorska J, Undas A. Low-grade endotoxemia in acute pulmonary embolism: Links with prothrombotic plasma fibrin clot phenotype. Thromb Res 2023; 232:70-76. [PMID: 37949000 DOI: 10.1016/j.thromres.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) can traverse the intestinal barrier and enter bloodstream, causing endotoxemia and triggering inflammation. Increased circulating LPS was reported in arterial thromboembolism. We investigated whether increased LPS levels occur in acute pulmonary embolism (PE) and if it is associated with a prothrombotic state. METHODS We studied 120 normotensive PE patients (aged 59 [48-68] years) on admission, after 5-7 days, and after a 3-month anticoagulation. Serum LPS levels, along with zonulin, a marker of gut permeability, endogenous thrombin potential (ETP), fibrin clot permeability (Ks), clot lysis time (CLT), fibrinolysis proteins, and platelet markers were assessed. RESULTS Median LPS concentration on admission was 70.5 (61.5-82) pg/mL (min-max, 34-134 pg/mL), in association with C-reactive protein (r = 0.22, p = 0.018), but not with fibrinogen, D-dimer or platelet markers. Patients with more severe PE had higher LPS levels compared with the remainder. Median zonulin level was 3.26 (2.74-4.08) ng/mL and correlated with LPS (r = 0.66, p < 0.0001). Patients with baseline LPS levels in the top quartile (≥82 pg/mL; n = 29) compared to lower quartiles had 18.6 % increased ETP, 14.5 % reduced Ks, and 25.3 % prolonged CLT, related to higher plasminogen activator inhibitor type 1 (PAI-1) levels. LPS decreased by 23.4 % after 5-7 days and by 40.4 % after 3-month anticoagulation together with reduced zonulin by 18.4 % and 22.3 %, respectively, compared to baseline (all p < 0.001). LPS levels were not related with fibrin characteristics and other variables assessed at 3 months. CONCLUSIONS Low-grade endotoxemia is detectable in patients with acute PE and may contribute to increased thrombin generation and PAI-1-mediated hypofibrinolysis.
Collapse
Affiliation(s)
- Michał Ząbczyk
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Joanna Natorska
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
2
|
Chooklin S, Chuklin S. PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS. FIZIOLOHICHNYĬ ZHURNAL 2023; 69:133-144. [DOI: 10.15407/fz69.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.
Collapse
|
3
|
Claesen K, De Loose J, Van Wielendaele P, De bruyn E, Sim Y, Thys S, De Meester I, Hendriks D. ProCPU Is Expressed by (Primary) Human Monocytes and Macrophages and Expression Differs between States of Differentiation and Activation. Int J Mol Sci 2023; 24:ijms24043725. [PMID: 36835137 PMCID: PMC9967989 DOI: 10.3390/ijms24043725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources.
Collapse
Affiliation(s)
- Karen Claesen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Emilie De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-3-265-27-27
| |
Collapse
|
4
|
Zhang L, Fang Y, Xing J, Cheng H, Sun X, Yuan Z, Xu Y, Hao J. The Efficacy of the Systemic Immune-Inflammation Index and Prognosis Nutritional Index for the Diagnosis of Venous Thromboembolism in Gastrointestinal Cancers. J Inflamm Res 2022; 15:4649-4661. [PMID: 35996687 PMCID: PMC9391990 DOI: 10.2147/jir.s376601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to analyze the association between venous thromboembolism (VTE) and inflammatory markers like systemic immune-inflammation index (SII) and prognosis nutritional index (PNI), and to evaluate their efficacy for the diagnosis of VTE in patients with gastrointestinal malignancies. Patients and Methods A total of 1326 patients with the initial diagnosis of gastrointestinal cancer in the First Affiliated Hospital of Anhui Medical University (AHMU) were enrolled in the training cohort. Univariate and multivariate analysis was used to pinpoint independent predictors of VTE, which were eventually visualized as the nomogram models. The Akaike Information Criterion (AIC) was used to screen the best model. The receiver operating characteristic curve (ROC) and the clinical decision curve analysis (DCA) were utilized to evaluate the models’ predictive performance in the training queue and another external sample of 250 patients at the Second Affiliated Hospital of AHMU. Results A total of 476 patients were complicated with VTE in the training cohort. Multifactorial analysis of clinical characteristics and inflammatory markers showed that PNI, SII, age, tumor location, and therapy were independent risk factors of VTE, visualized as model A. Another model B was constructed by adding coagulation markers to the previous analysis. Model B was the best prediction model with the minimum AIC value, followed by model A with an AUC of 0.806 (95% CI 0.782~0.830) which was similar to model B’s 0.832 (95% CI 0.810~0.855) but significantly higher than the currently widely used Khorana score’s 0.592 (95% CI 0.562~0.621) and the CATS score’s 0.682 (95% CI 0.653~0.712). The external verification yielded similar findings, with the AUC being 0.792 (95% CI 0.734~0.851), 0.834 (95% CI 0.778~0.890), 0.655 (95% CI 0.582~0.729), and 0.774 (95% CI 0.699~0.849) respectively. The DCA curves demonstrated that new models had excellent usefulness in screening patients with a high VTE risk. Conclusion The SII and PNI were simple and viable inflammatory markers associated with VTE, and the nomogram based on them and clinical features had a meaningful clinical utility for VTE in patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yue Fang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jianghao Xing
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hao Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xiaonan Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhichao Yuan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
5
|
The Diagnostic Value of the Systemic Immune-Inflammation Index for Venous Thromboembolism in Lung Cancer Patients: A Retrospective Study. Mediators Inflamm 2022; 2022:9215311. [PMID: 36046761 PMCID: PMC9424048 DOI: 10.1155/2022/9215311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background Venous thromboembolism (VTE) is considered a common complication in lung cancer patients. Despite its widespread use, the Khorana score performed moderately in predicting VTE risk. This study aimed to determine the diagnostic utility of the Systemic Immunoinflammatory Index (SII) and to create a novel nomogram for predicting VTE in patients with pulmonary carcinoma. Materials and Methods The data, like clinical features and laboratory indicators, of inpatients diagnosed with lung cancer from March 2019 to March 2020 were collected and analyzed. Univariate and multivariate logistic analyses were performed to confirm the risk factors and then construct a nomogram model. The calibration curve and clinical decision curve analysis (DCA) were used to assess the model's fitting performance. The receiver-operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to evaluate the diagnostic value of SII and the nomogram. Results This study enrolled 369 lung patients with a VTE morbidity rate of 23.33%. The patients with VTE had higher SII levels than the non-VTE group (1441.47 ± 146.28 vs. 626.76 ± 26.04, P < 0.001). SII is the stronger correlator for VTE among inflammatory markers, of which the optimal cut-off value was 851.51. Univariate and multivariate analysis revealed that the age, metastasis, antitumor treatment, hemoglobin<100 g/L, SII>851.51 × 109/L, and D-dimer>2 folds were independent risk factors for lung cancer-related VTE, and a new prediction nomogram model was constructed based on them. ROC curve analysis showed the AUC of the new model and Khorana score were 0.708 (0.643-0.772) and 0.600 (0.531-0.699). Conclusion The SII was a simple and valuable biomarker for VTE, and the new nomogram model based on it can accurately forecast the occurrence of VTE. They can be utilized in clinical practice to identify those at high risk of VTE in lung cancer patients.
Collapse
|
6
|
Hohensinner PJ, Mayer J, Kichbacher J, Kral-Pointner J, Thaler B, Kaun C, Hell L, Haider P, Mussbacher M, Schmid JA, Stojkovic S, Demyanets S, Fischer MB, Huber K, Wöran K, Hengstenberg C, Speidl WS, Oehler R, Pabinger I, Wojta J. Alternative activation of human macrophages enhances tissue factor expression and production of extracellular vesicles. Haematologica 2021; 106:454-463. [PMID: 31974204 PMCID: PMC7849567 DOI: 10.3324/haematol.2019.220210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand whether polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte-derived macrophages to proinflammatory and alternative activation states. Alternative polarization with interleukin-4 and interleukin-13 led to a macrophage phenotype characterized by increased tissue factor (TF) production and release and by an increase in extracellular vesicle production. In addition, TF activity was enhanced in extracellular vesicles of alternatively polarized macrophages. This TF induction was dependent on signal transducer and activator of transcription- 6 signaling and poly ADP ribose polymerase activity. In contrast to monocytes, human macrophages did not show increased TF expression upon stimulation with lipopolysaccharide and interferon-γ. Previous polarization to either a proinflammatory or an alternative activation subset did not change the subsequent stimulation of TF. The inability of proinflammatory activated macrophages to respond to lipopolysaccharide and interferon- γ with an increase in TF production seemed to be due to an increase in TF promoter methylation and was reversible when these macrophages were treated with a demethylating agent. In conclusion, we provide evidence that proinflammatory polarization of macrophages does not lead to enhanced procoagulatory function, whereas alternative polarization of macrophages leads to an increased expression of TF and increased production of TF-bearing extracellular vesicles by these cells suggesting a procoagulatory phenotype of alternatively polarized macrophages.
Collapse
|
7
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
8
|
Heubel-Moenen FCJI, Henskens YMC, Verhezen PWM, Wetzels RJH, Schouten HC, Beckers EAM. Fibrinolysis in patients with chemotherapy-induced thrombocytopenia and the effect of platelet transfusion. J Thromb Haemost 2019; 17:1073-1084. [PMID: 31033178 DOI: 10.1111/jth.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 01/11/2023]
Abstract
Essentials Bleeding in chemotherapy induced thrombocytopenia (CIT) might be influenced by hyperfibrinolysis. t-PA-thromboelastography is a fast and reliable assay for hyperfibrinolysis in CIT patients. Clots of CIT patients are more susceptible to t-PA induced lysis compared to healthy individuals. Besides platelets, other factors are likely to influence clot lysis in CIT patients. BACKGROUND Bleeding events in chemotherapy-induced thrombocytopenic (CIT) patients with similar platelet counts might be influenced by changes in clot lysis potential. OBJECTIVES To investigate, in an observational study, thromboelastographic lysis parameters, alterations in clot strength and susceptibility to clot lysis in CIT patients. To identify factors associated with fibrinolytic profiles, and to evaluate the effects of platelet transfusions. METHODS Independent determinants of tissue-type plasminogen activator (t-PA)-ROTEM lysis parameters were identified with multivariable linear regression. Clot formation, strength and lysis parameters were compared with the results of healthy individuals. Characteristics of CIT patients with and without hyperfibrinolytic profiles were compared. t-PA-ROTEM results before, 1 hour after and 24 hours after platelet transfusion were compared. RESULTS A total of 72 consecutive CIT patients were included. t-PA-ROTEM lysis parameters correlated with changes in fibrinolytic proteins. Clot formation time was longer, maximum clot firmness was weaker and lysis times were shorter than in healthy individuals. CIT patients had low plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor levels, and 40% showed hyperfibrinolytic profiles. Platelet transfusions resulted in less hyperfibrinolytic profiles in many, but not all CIT patients. Patients without hyperfibrinolytic profiles had higher fibrinogen, factor VIII and α2 -antiplasmin levels. CONCLUSIONS t-PA-ROTEM can be used as a fast and reliable assay to detect hyperfibrinolytic profiles in CIT patients. CIT patients have weaker clots, which are more susceptible to clot lysis, than healthy individuals. Besides platelets, other factors are likely to influence clot susceptibility to fibrinolysis in CIT patients. The impact of a hyperfibrinolytic t-PA-ROTEM profile on bleeding remains to be investigated.
Collapse
Affiliation(s)
- Floor C J I Heubel-Moenen
- Department of Hematology, Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Paul W M Verhezen
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Rick J H Wetzels
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Harry C Schouten
- Department of Hematology, Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Erik A M Beckers
- Department of Hematology, Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
9
|
Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol 2019; 186:13-23. [DOI: 10.1111/bjh.15869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roger J. S. Preston
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Jamie M. O'Sullivan
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - James S. O'Donnell
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
10
|
Novel Function of Isoamylamine Improves Survival in Endotoxemic Mice by Ameliorating Coagulopathy and Attenuating MMP-9 Expression Through p-ERK/p-p38 Signaling at Early Stage. Shock 2017; 47:772-779. [DOI: 10.1097/shk.0000000000000786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
In recent years, the traditional view of the hemostatic system as being regulated by a coagulation factor cascade coupled with platelet activation has been increasingly challenged by new evidence that activation of the immune system strongly influences blood coagulation and pathological thrombus formation. Leukocytes can be induced to express tissue factor and release proinflammatory and procoagulant molecules such as granular enzymes, cytokines, and damage-associated molecular patterns. These mediators can influence all aspects of thrombus formation, including platelet activation and adhesion, and activation of the intrinsic and extrinsic coagulation pathways. Leukocyte-released procoagulant mediators increase systemic thrombogenicity, and leukocytes are actively recruited to the site of thrombus formation through interactions with platelets and endothelial cell adhesion molecules. Additionally, phagocytic leukocytes are involved in fibrinolysis and thrombus resolution, and can regulate clearance of platelets and coagulation factors. Dysregulated activation of leukocyte innate immune functions thus plays a role in pathological thrombus formation. Modulation of the interactions between leukocytes or leukocyte-derived procoagulant materials and the traditional hemostatic system is an attractive target for the development of novel antithrombotic strategies.
Collapse
|
12
|
Manfredi AA, Baldini M, Camera M, Baldissera E, Brambilla M, Peretti G, Maseri A, Rovere-Querini P, Tremoli E, Sabbadini MG, Maugeri N. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis. Ann Rheum Dis 2016; 75:1511-20. [PMID: 26819099 DOI: 10.1136/annrheumdis-2015-208442] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/01/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular disease is important in rheumatoid arthritis (RA). Tissue factor (TF) is expressed upon platelet activation and initiates coagulation. Anti-tumour necrosis factor-α (TNFα) agents seem to decrease RA-associated cardiovascular events. We investigated whether (1) TNFα activates human platelets and (2) TNFα pharmacological blockade modulates the platelet-leucocyte reciprocal activation in RA. DESIGN The expression of platelet TNFα receptors has been assessed by flow cytometry and immunogold electron microscopy. Platelet and leucocyte activation has been assessed also in the presence of antibodies against the TNFα receptors 1 and 2 and of infliximab. TF expression, binding to fibrinogen and phosphatidylserine exposure, has been assessed by flow cytometry, TF activity by coagulation time and by endogenous thrombin generation. Markers of platelet and leucocyte activation have been assessed in 161 subjects: 42 patients with RA, 12 with osteoarthritis, 37 age-matched and sex-matched patients with chronic stable angina and 70 age-matched and sex-matched healthy subjects. RESULTS TNFα elicited the platelet activation and the expression of TF, which in turn prompted thrombin generation and clot formation. Inhibition of the TNFα-induced activation restricted platelet ability to activate leucocytes and to induce leucocyte TF. TNFα inhibition did not influence platelet activation induced by collagen, ADP or thrombin receptor activating peptide-6. Platelets of patients with RA were more activated than those of controls. Activation was reduced in patients treated with TNFα inhibitors. CONCLUSIONS TNFα-dependent pathways control platelet activation and TF expression in RA. Further studies will verify whether the protective effect of TNFα inhibitors on cardiovascular events involves their ability to modulate platelet function.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Mattia Baldini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Elena Baldissera
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Giuseppe Peretti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Attilio Maseri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elena Tremoli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Grazia Sabbadini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
13
|
Okafor ON, Gorog DA. Endogenous Fibrinolysis: An Important Mediator of Thrombus Formation and Cardiovascular Risk. J Am Coll Cardiol 2015; 65:1683-1699. [PMID: 25908074 DOI: 10.1016/j.jacc.2015.02.040] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/15/2022]
Abstract
Most acute cardiovascular events are attributable to arterial thrombosis. Plaque rupture or erosion stimulates platelet activation, aggregation, and thrombosis, whilst simultaneously activating enzymatic processes that mediate endogenous fibrinolysis to physiologically maintain vessel patency. Interplay between these pathways determines clinical outcome. If proaggregatory factors predominate, the thrombus may propagate, leading to vessel occlusion. However, if balanced by a healthy fibrinolytic system, thrombosis may not occur or cause lasting occlusion. Despite abundant evidence for the fibrinolytic system regulating thrombosis, it has been overlooked compared with platelet reactivity, partly due to a lack of techniques to measure it. We evaluate evidence for endogenous fibrinolysis in arterial thrombosis and review techniques to assess it, including biomarkers and global assays, such as thromboelastography and the Global Thrombosis Test. Global assays, simultaneously assessing proaggregatory and fibrinolytic pathways, could play a role in risk stratification and in identifying impaired fibrinolysis as a potential target for pharmacological modulation.
Collapse
Affiliation(s)
- Osita N Okafor
- East & North Hertfordshire NHS Trust, Hertfordshire, United Kingdom
| | - Diana A Gorog
- East & North Hertfordshire NHS Trust, Hertfordshire, United Kingdom; Vascular Sciences, National Heart & Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
14
|
Görlinger K, Bergmann L, Dirkmann D. Coagulation management in patients undergoing mechanical circulatory support. Best Pract Res Clin Anaesthesiol 2013; 26:179-98. [PMID: 22910089 DOI: 10.1016/j.bpa.2012.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/25/2012] [Accepted: 04/20/2012] [Indexed: 12/28/2022]
Abstract
The incidence of bleeding and thrombo-embolic complications in patients undergoing mechanical circulatory support therapy remains high and is associated with bad outcomes and increased costs. The need for anticoagulation and anti-platelet therapy varies widely between different pulsatile and non-pulsatile ventricular-assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) systems. Therefore, a unique anticoagulation protocol cannot be recommended. Notably, most thrombo-embolic complications occur despite values of conventional coagulation tests being within the targeted range. This is due to the fact that conventional coagulation tests such as international normalised ratio (INR), activated partial thromboplastin time (aPTT) and platelet count cannot detect hyper- or hypofibrinolysis, hypercoagulability due to tissue factor expression on circulating cells or increased clot firmness, and platelet aggregation as well as response to anti-platelet drugs. By contrast, point-of-care (POC) whole blood viscoelastic tests (thromboelastometry/-graphy) and platelet function tests (impedance or turbidimetric aggregometry) reflect in detail the haemostatic status of patients undergoing mechanical circulatory support therapy and the efficacy of their anticoagulation and antiaggregation therapy. Therefore, monitoring of haemostasis using POC thromboelastometry/-graphy and platelet function analysis is recommended during mechanical circulatory support therapy to reduce the risk of bleeding and thrombo-embolic complications. Notably, these haemostatic tests should be performed repeatedly during mechanical circulatory support therapy since thrombin generation, clot firmness and platelet response may change significantly over time with a high inter- and intra-individual variability. Furthermore, coagulation management can be hampered in non-pulsatile VADs by acquired von Willebrand syndrome, and in general by acquired factor XIII deficiency as well as by heparin-induced thrombocytopenia. In addition, POC testing can be used in bleeding patients to guide calculated goal-directed therapy with allogeneic blood products, haemostatic drugs and coagulation factor concentrates to optimise the haemostasis and to minimise transfusion requirements, transfusion-associated adverse events and to avoid thrombo-embolic complications, as well. However, coagulation management in patients undergoing mechanical circulatory support therapy is somehow like navigating between Scylla and Charybdis, and development of protocols based on POC testing seems to be beneficial.
Collapse
Affiliation(s)
- Klaus Görlinger
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinkum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | |
Collapse
|
15
|
Schetz M, Van Cromphaut S, Dubois J, Van den Berghe G. Does the surface-treated AN69 membrane prolong filter survival in CRRT without anticoagulation? Intensive Care Med 2012; 38:1818-25. [PMID: 22773036 DOI: 10.1007/s00134-012-2633-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/06/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE The need for continuous anticoagulation remains a significant drawback in continuous renal replacement therapy (CRRT), especially in patients with increased bleeding risk. Polyethyleneimine treatment of the AN69 membrane (AN69ST) reduces thrombogenicity through decreased contact activation and promotion of heparin binding. The aim of this study is to evaluate whether this membrane prolongs filter survival in CRRT without anticoagulation. METHODS A single-center, prospective, randomized, double-blind controlled trial with cross-over design comparing filter survival with the AN69ST membrane and the original AN69 membrane in 39 patients treated with continuous venovenous hemofiltraton (CVVH) without additional heparin. RESULTS Filter survival with the AN69ST membrane (n = 75) was 14.2 ± 8.2 h, which is not significantly different from the 13.3 ± 10.3 h for the original AN69 membrane (n = 76; p = 0.59). Limiting the analysis to those treatments that were interrupted for filter clotting yielded similar results: 14.4 ± 8.2 h for the AN69 ST membrane (n = 62) versus 14.1 ± 7.5 h for the original AN69 membrane (n = 56) (p = 0.93). CONCLUSIONS Compared with the original AN69 membrane, the surface-treated AN69ST membrane does not prolong filter survival during CVVH without systemic anticoagulation and with the CRRT settings used in this study.
Collapse
Affiliation(s)
- Miet Schetz
- Department of Intensive Care Medicine, University Hospital of the Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | | | |
Collapse
|
16
|
Shantsila E, Montoro-García S, Tapp LD, Apostolakis S, Wrigley BJ, Lip GYH. Fibrinolytic status in acute coronary syndromes: evidence of differences in relation to clinical features and pathophysiological pathways. Thromb Haemost 2012; 108:32-40. [PMID: 22538774 DOI: 10.1160/th12-01-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/24/2012] [Indexed: 01/20/2023]
Abstract
Limited data are available on the role of innate fibrinolysis in acute coronary syndromes (ACS). In the present study we evaluated the dynamic alterations of fibrinolytic markers in patients presenting with ACS. Tissue-type-(tPA) and urokinase type-(uPA) plasminogen activators, plasminogen activator inhibitor (PAI-1) antigen and activity and thrombin activatable fibrinolysis inhibitor (TAFI) were analysed in 50 patients with ST elevation myocardial infarction (STEMI), 47 non-STEMI patients (NSTEMI), 40 patients with stable coronary artery disease (CAD) and 39 controls. The parameters were measured on day 1 and days 3, 7 and 30. Counts of monocyte subsets, monocyte-platelet aggregates and plasma inflammatory cytokines were assessed on admission. On day 1, TAFI was higher in NSTEMI vs. STEMI (p<0.001) while PAI-1 activity was higher in STEMI (p<0.001). In STEMI, uPA activity levels was low on day 1 but significantly increased on day 30 (p<0.001). TAFI levels were increased in NSTEMI on day 1 and gradually reduced by day 30 (p<0.05). In STEMI, TAFI levels peaked at day 7 (p<0.05) and dropped significantly by day 30 (p<0.05). CD14++CD16+ monocytes were independently associated with PAI-1 activity in ACS (p=0.03). Monocyte-platelet aggregates rather than platelet-free monocytes were an independent determinant of tPA, PAI-1 antigen and TAFI on a multivariate analysis (p<0.05). There are significant differences in fibrinolytic activity between patients with STEMI and NSTEMI. These changes could reflect the role of these factors in post-MI myocardial healing. Monocyte-platelet interactions are independently associated with the regulation of the fibrinolytic status in ACS.
Collapse
Affiliation(s)
- Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
17
|
Sepsis, thrombosis and organ dysfunction. Thromb Res 2012; 129:290-5. [DOI: 10.1016/j.thromres.2011.10.013] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/16/2011] [Accepted: 10/14/2011] [Indexed: 02/07/2023]
|
18
|
Parsi K, Exner T, Ma DDF, Joseph JE. In vitro effects of detergent sclerosants on fibrinolytic enzymes and inhibitors. Thromb Res 2010; 126:328-36. [DOI: 10.1016/j.thromres.2010.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022]
|
19
|
Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis 2010; 2:e2010024. [PMID: 21415977 PMCID: PMC3033145 DOI: 10.4084/mjhid.2010.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/08/2010] [Indexed: 12/12/2022] Open
Abstract
Sepsis is almost invariably associated with haemostatic abnormalities ranging from subclinical activation of blood coagulation (hypercoagulability), which may contribute to localized venous thromboembolism, to acute disseminated intravascular coagulation (DIC), characterized by massive thrombin formation and widespread microvascular thrombosis, partly responsible of the multiple organ dysfunction syndrome (MODS), and subsequent consumption of platelets and coagulation proteins causing, in most severe cases, bleeding manifestations. There is general agreement that the key event underlying this life-threatening sepsis complication is the overwhelming inflammatory host response to the infectious agent leading to the overexpression of inflammatory mediators. Mechanistically, the latter, together with the micro-organism and its derivatives, causes DIC by 1) up-regulation of procoagulant molecules, primarily tissue factor (TF), which is produced mainly by stimulated monocytes-macrophages and by specific cells in target tissues; 2) impairment of physiological anticoagulant pathways (antithrombin, protein C pathway, tissue factor pathway inhibitor), which is orchestrated mainly by dysfunctional endothelial cells (ECs); and 3) suppression of fibrinolysis due to increased plasminogen activator inhibitor-1 (PAI-1) by ECs and likely also to thrombin-mediated activation of thrombin-activatable fibrinolysis inhibitor (TAFI). Notably, clotting enzymes non only lead to microvascular thrombosis but can also elicit cellular responses that amplify the inflammatory reactions. Inflammatory mediators can also cause, directly or indirectly, cell apoptosis or necrosis and recent evidence indicates that products released from dead cells, such as nuclear proteins (particularly extracellular histones), are able to propagate further inflammation, coagulation, cell death and MODS. These insights into the pathogenetic mechanisms of DIC and MODS may have important implications for the development of new therapeutic agents that could be potentially useful particularly for the management of severe sepsis.
Collapse
|
20
|
Prognostic value of plasma fibrinolysis activation markers in cardiovascular disease. J Am Coll Cardiol 2010; 55:2701-9. [PMID: 20538163 DOI: 10.1016/j.jacc.2009.11.095] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
The pivotal role of hypoactive endogenous fibrinolysis in the occurrence of thrombotic cardiovascular events is now well-recognized. To evaluate the diagnostic and prognostic role of impaired fibrinolysis, plasma fibrinolysis markers have been investigated in large prospective studies in both healthy individuals and patients with established coronary disease. Antigen and activity levels of components of the fibrinolytic system were measured by immunoassays, which replaced earlier global fibrinolysis tests. This review covers 45 studies in nearly 50,000 subjects, examining the association between plasma markers of fibrinolysis and coronary artery disease, to establish the usefulness of these markers in predicting future cardiovascular events. The predictive value of plasma levels of tissue-type plasminogen activator, platelet activator inhibitor-1, plasmin-antiplasmin complex, D-dimer, thrombin activatable fibrinolysis inhibitor, and lipoprotein(a) for major adverse cardiac events is highly variable and conflicting, especially after adjusting for conventional risk factors, judging from the published data in the last decade. The value of fibrinolysis activity markers is very limited in aiding diagnosis and risk stratification in the individual patient, on the basis of the weak prognostic values obtained in some studies and the lack of power in others. The physiological limitations of such markers in reflecting endogenous fibrinolysis is discussed. The emerging novel global assays of fibrinolysis will require large-scale clinical trials before their prognostic power or superiority to multiple biomarker measurements can be evaluated.
Collapse
|
21
|
Abstract
Remarkable progress has occurred over the last two decades in stroke interventions. Many have been developed on the basis of their efficacy in other disorders. This "inheritance" approach should continue, but two areas where completely novel therapeutic targets might emerge are the stimulation of neuroplasticity and unraveling the genetic code of stroke heterogeneity (Table 2). For the former, the next steps are to identify small-molecule, nontoxic compounds that most effectively enhance plasticity in animal models, and then subject them to clinical trial in humans. For the latter, more and larger-scale cooperative GWASs in carefully phenotyped stroke populations are required to better understand the polygenic nature of cerebrovascular disease. Then, the physiological relevance of genetic abnormalities can be determined in in vitro and in vivo systems before candidate compounds are developed.
Collapse
|