1
|
Ennishi D. The biology of the tumor microenvironment in DLBCL: Targeting the "don't eat me" signal. J Clin Exp Hematop 2021; 61:210-215. [PMID: 34511583 PMCID: PMC8808113 DOI: 10.3960/jslrt.21015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of malignant lymphoma with biologically and clinically heterogeneous features. Recently, the tumor microenvironment of this disease has been recognized as an important biological aspect of tumor development and therapeutic targets. Recurrent genetic alterations play significant roles in immune recognition of lymphoma cells. In particular, novel genetic alterations promoting phagocytosis were identified, suggesting a potential therapeutic strategy targeting the “don’t eat me” signal.
Collapse
Affiliation(s)
- Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
2
|
Ennishi D, Takata K, Béguelin W, Duns G, Mottok A, Farinha P, Bashashati A, Saberi S, Boyle M, Meissner B, Ben-Neriah S, Woolcock BW, Telenius A, Lai D, Teater M, Kridel R, Savage KJ, Sehn LH, Morin RD, Marra MA, Shah SP, Connors JM, Gascoyne RD, Scott DW, Melnick AM, Steidl C. Molecular and Genetic Characterization of MHC Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition. Cancer Discov 2019; 9:546-563. [PMID: 30705065 DOI: 10.1158/2159-8290.cd-18-1090] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
We performed a genomic, transcriptomic, and immunophenotypic study of 347 patients with diffuse large B-cell lymphoma (DLBCL) to uncover the molecular basis underlying acquired deficiency of MHC expression. Low MHC-II expression defines tumors originating from the centroblast-rich dark zone of the germinal center (GC) that was associated with inferior prognosis. MHC-II-deficient tumors were characterized by somatically acquired gene mutations reducing MHC-II expression and a lower amount of tumor-infiltrating lymphocytes. In particular, we demonstrated a strong enrichment of EZH2 mutations in both MHC-I- and MHC-II-negative primary lymphomas, and observed reduced MHC expression and T-cell infiltrates in murine lymphoma models expressing mutant Ezh2 Y641. Of clinical relevance, EZH2 inhibitors significantly restored MHC expression in EZH2-mutated human DLBCL cell lines. Hence, our findings suggest a tumor progression model of acquired immune escape in GC-derived lymphomas and pave the way for development of complementary therapeutic approaches combining immunotherapy with epigenetic reprogramming. SIGNIFICANCE: We demonstrate how MHC-deficient lymphoid tumors evolve in a cell-of-origin-specific context. Specifically, EZH2 mutations were identified as a genetic mechanism underlying acquired MHC deficiency. The paradigmatic restoration of MHC expression by EZH2 inhibitors provides the rationale for synergistic therapies combining immunotherapies with epigenetic reprogramming to enhance tumor recognition and elimination.See related commentary by Velcheti et al., p. 472.This article is highlighted in the In This Issue feature, p. 453.
Collapse
Affiliation(s)
- Daisuke Ennishi
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Pedro Farinha
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Ali Bashashati
- Molecular Oncology, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Saeed Saberi
- Molecular Oncology, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Bruce W Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Molecular Oncology, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert Kridel
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Laurie H Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marco A Marra
- Genome Science Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Molecular Oncology, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Joseph M Connors
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Nijland M, Veenstra RN, Visser L, Xu C, Kushekhar K, van Imhoff GW, Kluin PM, van den Berg A, Diepstra A. HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy? Oncoimmunology 2017; 6:e1295202. [PMID: 28507804 PMCID: PMC5414870 DOI: 10.1080/2162402x.2017.1295202] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 02/09/2023] Open
Abstract
Antigen presentation by tumor cells in the context of Human Leukocyte Antigen (HLA) is generally considered to be a prerequisite for effective immune checkpoint inhibitor therapy. We evaluated cell surface HLA class I, HLA class II and cytoplasmic HLA-DM staining by immunohistochemistry (IHC) in 389 classical Hodgkin lymphomas (cHL), 22 nodular lymphocyte predominant Hodgkin lymphomas (NLPHL), 137 diffuse large B-cell lymphomas (DLBCL), 39 primary central nervous system lymphomas (PCNSL) and 19 testicular lymphomas. We describe a novel mechanism of immune escape in which loss of HLA-DM expression results in aberrant membranous invariant chain peptide (CLIP) expression in HLA class II cell surface positive lymphoma cells, preventing presentation of antigenic peptides. In HLA class II positive cases, HLA-DM expression was lost in 49% of cHL, 0% of NLPHL, 14% of DLBCL, 3% of PCNSL and 0% of testicular lymphomas. Considering HLA class I, HLA class II and HLA-DM together, 88% of cHL, 10% of NLPHL, 62% of DLBCL, 77% of PCNSL and 87% of testicular lymphoma cases had abnormal HLA expression patterns. In conclusion, an HLA expression pattern incompatible with normal antigen presentation is common in cHL, DLBCL, PCNSL and testicular lymphoma. Retention of CLIP in HLA class II caused by loss of HLA-DM is a novel immune escape mechanism, especially prevalent in cHL. Aberrant HLA expression should be taken into account when evaluating efficacy of checkpoint inhibitors in B-cell lymphomas.
Collapse
Affiliation(s)
- Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rianne N Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Chuanhui Xu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Kushi Kushekhar
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Gustaaf W van Imhoff
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Philip M Kluin
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Kendrick S, Rimsza LM, Scott DW, Slack GW, Farinha P, Tan KL, Persky D, Puvvada S, Connors JM, Sehn L, Gascoyne RD, Schmelz M. Aberrant cytoplasmic expression of MHCII confers worse progression free survival in diffuse large B-cell lymphoma. Virchows Arch 2016; 470:113-117. [PMID: 27888357 DOI: 10.1007/s00428-016-2041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha Kendrick
- Department of Pathology, University of Arizona, P.O. Box 24-5043, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Graham W Slack
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Pedro Farinha
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - King L Tan
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Daniel Persky
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Soham Puvvada
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Joseph M Connors
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Laurie Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Monika Schmelz
- Department of Pathology, University of Arizona, P.O. Box 24-5043, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
5
|
Sun R, Medeiros LJ, Young KH. Diagnostic and predictive biomarkers for lymphoma diagnosis and treatment in the era of precision medicine. Mod Pathol 2016; 29:1118-42. [PMID: 27363492 DOI: 10.1038/modpathol.2016.92] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
Lymphomas are a group of hematological malignancies derived from lymphocytes. Lymphomas are clinically and biologically heterogeneous and have overlapping diagnostic features. With the advance of new technologies and the application of efficient and feasible detection platforms, an unprecedented number of novel biomarkers have been discovered or are under investigation at the genetic, epigenetic, and protein level as well as the tumor microenvironment. These biomarkers have enabled new clinical and pathological insights into the mechanisms underlying lymphomagenesis and also have facilitated improvements in the diagnostic workup, sub-classification, outcome stratification, and personalized therapy for lymphoma patients. However, integrating these biomarkers into clinical practice effectively and precisely in daily practice is challenging. More in-depth studies are required to further validate these novel biomarkers and to assess other parameters that can affect the reproducibility of these biomarkers such as the selection of detection methods, biological reagents, interpretation of data, and cost efficiency. Despite these challenges, there are many reasons to be optimistic that novel biomarkers will facilitate better algorithms and strategies as we enter a new era of precision medicine to better refine diagnosis, prognostication, and rational treatment design for patients with lymphomas.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, Shanxi Cancer Hospital, Shanxi, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
6
|
Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, Pedersen LM, Møller MB, Green TM, Gascoyne DM, Banham AH. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia 2015; 30:605-16. [PMID: 26500140 PMCID: PMC4777777 DOI: 10.1038/leu.2015.299] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022]
Abstract
The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients.
Collapse
Affiliation(s)
- P J Brown
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - K K Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - S L Felce
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - L Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - H Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - E J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - L M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - M B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - T M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - D M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
7
|
Testoni M, Zucca E, Young KH, Bertoni F. Genetic lesions in diffuse large B-cell lymphomas. Ann Oncol 2015; 26:1069-1080. [PMID: 25605746 PMCID: PMC4542576 DOI: 10.1093/annonc/mdv019] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults, accounting for 35%-40% of all cases. The combination of the anti-CD20 monoclonal antibody rituximab with anthracycline-based combination chemotherapy (R-CHOP, rituximab with cyclophosphamide, doxorubicin, vincristine and prednisone) lead to complete remission in most and can cure more than half of patients with DLBCL. The diversity in clinical presentation, as well as the pathologic and biologic heterogeneity, suggests that DLBCL comprises several disease entities that might ultimately benefit from different therapeutic approaches. In this review, we summarize the current literature focusing on the genetic lesions identified in DLBCL.
Collapse
Affiliation(s)
- M Testoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - E Zucca
- Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - K H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - F Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
8
|
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 2013; 140:259-72. [PMID: 23789844 DOI: 10.1111/imm.12136] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA(-) GCB cells compared with CIITA(+) B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA(-) or CIITA(low) GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy.
Collapse
|
9
|
Puvvada S, Kendrick S, Rimsza L. Molecular classification, pathway addiction, and therapeutic targeting in diffuse large B cell lymphoma. Cancer Genet 2013; 206:257-65. [PMID: 24080457 DOI: 10.1016/j.cancergen.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/16/2022]
Abstract
The rapid emergence of molecularly based techniques to detect changes in the genetic landscape of diffuse large B cell lymphoma (DLBCL), including gene expression, DNA and RNA sequencing, and epigenetic profiling, has significantly influenced the understanding and therapeutic targeting of DLBCL. In this review, we briefly discuss the new methods used in the study of DLBCL. We describe the influence of the generated data on DLBCL classification and the identification of new entities and altered cell survival strategies, with a focus on the renewed interest in some classic oncogenic pathways that are currently targeted for new therapy. Finally, we examine the molecular genomic studies that revealed the importance of the tumor microenvironment in the pathogenesis of DLBCL.
Collapse
Affiliation(s)
- Soham Puvvada
- Department of Medicine, Division of Hematology-Oncology, University of Arizona, Tucson, AZ, USA.
| | | | | |
Collapse
|
10
|
Perry AM, Mitrovic Z, Chan WC. Biological Prognostic Markers in Diffuse Large B-Cell Lymphoma. Cancer Control 2012; 19:214-26. [DOI: 10.1177/107327481201900306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Anamarija M. Perry
- Department of Pathology and Microbiology at the Nebraska Medical Center, Omaha, Nebraska
| | - Zdravko Mitrovic
- Department of Internal Medicine, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Wing C. Chan
- Department of Pathology and Microbiology at the Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
11
|
Partial plasma cell differentiation as a mechanism of lost major histocompatibility complex class II expression in diffuse large B-cell lymphoma. Blood 2011; 119:1459-67. [PMID: 22167754 DOI: 10.1182/blood-2011-07-363820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of major histocompatibility complex class II (MHC II) expression is associated with poor patient outcome in diffuse large B-cell lymphoma (DLBCL). As MHC II molecules are lost with plasmacytic differentiation in normal cells, we asked whether MHC II loss in DLBCL is associated with an altered differentiation state. We used gene expression profiling, quantum dots, and immunohistochemistry to study the relationship between MHC II and plasma cell markers in DLBCL and plasmablastic lymphoma (PBL). Results demonstrate that MHC II(-) DLBCL immunophenotypically overlap with PBL and demonstrate an inverse correlation between MHC II and plasma cell markers MUM1, PRDM1/Blimp1, and XBP1s. In addition, MHC II expression is significantly higher in germinal center-DLBCL than activated B cell-DLBCL. A minor subset of cases with an unusual pattern of mislocalized punctate MHC II staining and intermediate levels of mRNA is also described. Finally, we show that PBL is negative for MHC II. The results imply a spectrum of MHC II expression that is more frequently diminished in tumors derived from B cells at the later stages of differentiation (with complete loss in PBL). Our observations provide a possible unifying concept that may contribute to the poor outcome reported in all MHC II(-) B-cell tumors.
Collapse
|
12
|
Shrestha D, Szöllosi J, Jenei A. Bare lymphocyte syndrome: an opportunity to discover our immune system. Immunol Lett 2011; 141:147-57. [PMID: 22027563 DOI: 10.1016/j.imlet.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/27/2022]
Abstract
Bare lymphocyte syndrome (BLS) is a rare immunodeficiency disorder manifested by the partial or complete disappearance of major histocompatibility complex (MHC) proteins from the surface of the cells. Based on this specific feature, it is categorized into three different types depending on which type of MHC protein is affected. These proteins are mainly involved in generating the effective immune responses by differentiating 'self' from 'non-self' antigens through a process referred to as antigen presentation. Investigations on BLS have immensely contributed to our understanding of the transcriptional regulation of these molecules and have led to the discovery of several important proteins of the antigen presentation pathway. Reviews on this subject consistently project type II BLS, MHC II deficiency as BLS syndrome, although literatures' document cases of other types of BLS too. Therefore, in this article, we have assembled information on the BLS syndrome to produce a systematic narration while emphasizing the importance of BLS system in studying various aspects of immune biology.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen 4032, Hungary
| | | | | |
Collapse
|
13
|
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a recognized non-Hodgkin lymphoma entity with unique pathologic, clinical, and molecular characteristics distinct from those of other diffuse large B-cell lymphomas. Immunohistochemical characterization and molecular studies strongly suggest that PMBCL is of germinal center or postgerminal center origin. Pivotal gene expression profiling work defined major deregulated pathway activities that overlap with Hodgkin lymphoma and prompted a more detailed analysis of candidate genes. In particular, the nuclear factor-κB and the Janus Kinase-Signal Transducer and Activator of Transcription signaling pathways are targeted by multiple genomic hits, and constitutive activity of both pathways can be considered molecular hallmark alterations of PMBCL. Moreover, data are emerging giving unique insight into remodeling of the epigenome that affects transcriptional regulation of a multitude of genes. More recently, the tumor microenvironment of PMBCL has shifted into focus based on a number of gene perturbations altering expression of surface molecules that contribute to immune escape. These findings highlight the importance of immune privilege in the pathogenesis of PMBCL and suggest that disrupting crosstalk between the tumor cells and the microenvironment might be a rational new therapeutic target in conjunction with traditional treatment strategies.
Collapse
|
14
|
Majumder P, Boss JM. DNA methylation dysregulates and silences the HLA-DQ locus by altering chromatin architecture. Genes Immun 2011; 12:291-9. [PMID: 21326318 PMCID: PMC3107363 DOI: 10.1038/gene.2010.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The MHC-II locus encodes a cluster of highly polymorphic genes HLA-DR, -DQ, and -DP that are co-expressed in mature B lymphocytes. Two cell lines were established over 30 years ago from a patient diagnosed with acute lymphocytic leukemia. Laz221 represented the leukemic cells of the patient; whereas Laz388 represented the normal B cells of the patient. Whereas Laz388 expressed both HLA-DR and HLA-DQ surface and gene products, Laz221 expressed only HLA-DR genes. The discordant expression of HLA-DR and HLA-DQ genes was due to epigenetic silencing of the HLA-DQ region CTCF-binding insulators that separate the MHC-II subregions by DNA methylation. These epigenetic modifications resulted in the loss of binding of the insulator protein CTCF to the HLA-DQ flanking insulator regions and the MHC-II specific transcription factors to the HLA-DQ promoter regions. These events led to the inability of the HLA-DQ promoter regions to interact with flanking insulators that control HLA-DQ expression. Inhibition of DNA methylation by treatment with 5’deoxyazacytidine reversed each of these changes and restored expression of the HLA-DQ locus. These results highlight the consequence of disrupting an insulator within the MHC-II region and may be a normal developmental mechanism or one used by tumor cells to escape immune surveillance.
Collapse
Affiliation(s)
- P Majumder
- Department of Microbiology and Immunology, Emory University School Of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
15
|
Diepstra A. MHC class II as a therapeutic target in B-cell lymphomas: the CIITA road to paradise? Leuk Lymphoma 2010; 50:1740-1. [PMID: 19863170 DOI: 10.3109/10428190903350454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
16
|
Wilkinson ST, Fernandez DR, Murphy SP, Braziel RM, Campo E, Chan WC, Delabie J, Gascoyne RD, Staudt LM, Jaffe ES, Rosenwald A, Rimsza LM. Decreased major histocompatibility complex class II expression in diffuse large B-cell lymphoma does not correlate with CpG methylation of class II transactivator promoters III and IV. Leuk Lymphoma 2010; 50:1875-8. [PMID: 19814686 DOI: 10.3109/10428190903297531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Coordinate loss of MHC class II expression in the diffuse large B cell lymphoma cell line OCI-Ly2 is due to a novel mutation in RFX-AP. Immunogenetics 2009; 62:109-16. [PMID: 20024540 DOI: 10.1007/s00251-009-0418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
Loss of major histocompatibility complex class II (MHCII) antigen expression on diffuse large B cell lymphoma (DLBCL) corresponds closely with significant decreases in patient survival. However, the mechanisms accounting for MHCII loss in DLBCL have not been thoroughly characterized to date. In this report, we demonstrate that coordinate loss of MHCII expression in OCI-Ly2 DLBCL cells is associated with an 11-base deletion in the cDNA encoding RFX-AP, one of the subunits of the heterotrimeric regulatory factor X (RFX) that is required for activating MHCII transcription. This deletion results in a frameshift in the RFX-AP protein beginning at amino acid 234 and, therefore, in the loss of C-terminal amino acids that are required for function. Stable transfection of OCI-Ly2 DLBCL cells with an expression vector for wild-type RFX-AP restores MHCII expression, which strongly suggests that the defect in RFX-AP accounts for MHCII loss in these cells.
Collapse
|