1
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Tinsley SL, Allen-Petersen BL. PP2A and cancer epigenetics: a therapeutic opportunity waiting to happen. NAR Cancer 2022; 4:zcac002. [PMID: 35118387 PMCID: PMC8807117 DOI: 10.1093/narcan/zcac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The epigenetic state of chromatin is altered by regulators which influence gene expression in response to environmental stimuli. While several post-translational modifications contribute to chromatin accessibility and transcriptional programs, our understanding of the role that specific phosphorylation sites play is limited. In cancer, kinases and phosphatases are commonly deregulated resulting in increased oncogenic signaling and loss of epigenetic regulation. Aberrant epigenetic states are known to promote cellular plasticity and the development of therapeutic resistance in many cancer types, highlighting the importance of these mechanisms to cancer cell phenotypes. Protein Phosphatase 2A (PP2A) is a heterotrimeric holoenzyme that targets a diverse array of cellular proteins. The composition of the PP2A complex influences its cellular targets and activity. For this reason, PP2A can be tumor suppressive or oncogenic depending on cellular context. Understanding the nuances of PP2A regulation and its effect on epigenetic alterations can lead to new therapeutic avenues that afford more specificity and contribute to the growth of personalized medicine in the oncology field. In this review, we summarize the known PP2A-regulated substrates and potential phosphorylation sites that contribute to cancer cell epigenetics and possible strategies to therapeutically leverage this phosphatase to suppress tumor growth.
Collapse
Affiliation(s)
- Samantha L Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
3
|
Cellular experiments to study the inhibition of c-Myc/MAX heterodimerization. Methods Enzymol 2022; 675:193-205. [DOI: 10.1016/bs.mie.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Feng FF, Cheng P, Sun C, Wang H, Wang W. Inhibitory effects of polyphyllins I and VII on human cisplatin-resistant NSCLC via p53 upregulation and CIP2A/AKT/mTOR signaling axis inhibition. Chin J Nat Med 2020; 17:768-777. [PMID: 31703757 DOI: 10.1016/s1875-5364(19)30093-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/28/2023]
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in multiple kinds of cancers including non-small cell lung cancer (NSCLC). CIP2A plays an 'oncogenic nexus' to participate in the tumorigenesis and chemoresistance in several cancer types. AKT and mTORC1 overactivation are detected in NSCLC and many other cancers. Previous studies found that the CIP2A/AKT/mTOR pathway controls cell growth, apoptosis, autophagy process. Polyphyllin I (PPI) and polyphyllin VII (PPVII) are natural components extracted from Paris polyphylla that display anti-cancer properties. In the present study, we investigated whether PPI and PPVII can be used in the cisplatin (DDP)-resistant human NSCLC cell line A549/DDP. Results demonstrated that PPI and PPVII treatment significantly suppressed A549/DDP cell proliferation, migration, invasion and EMT, induced apoptosis and autophagy. Further examination of the mechanism revealed that the PPI and PPVII significantly upregulated the p53, induced caspase-dependent apoptosis and suppressed the CIP2A/AKT/mTOR pathway. The activation of autophagy was mediated through PPI and PPVII induced inhibition of mTOR. We propose that PPI and PPVII might be developed as candidate drugs for DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Fei-Fei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Chao Sun
- Department of Central Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
5
|
Ma W, Xiang Y, Yang R, Zhang T, Xu J, Wu Y, Liu X, Xiang K, Zhao H, Liu Y, Si Y. Cucurbitacin B induces inhibitory effects via the CIP2A/PP2A/C-KIT signaling axis in t(8;21) acute myeloid leukemia. J Pharmacol Sci 2019; 139:304-310. [DOI: 10.1016/j.jphs.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023] Open
|
6
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
7
|
Ji J, Zhen W, Si Y, Ma W, Zheng L, Li C, Zhang Y, Qin S, Zhang T, Liu P, Zheng X, Liu Y. Increase in CIP2A expression is associated with cisplatin chemoresistance in gastric cancer. Cancer Biomark 2018; 21:307-316. [PMID: 29103022 DOI: 10.3233/cbm-170416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein which involves in the progression of several human malignancies. Development of cisplatin (DDP) resistance is the obstacle to an effective control of gastric cancer (GC) clinically. OBJECTIVE We thus assessed whether CIP2A expression is associated with sensitivity of GC to DDP. METHODS Real-time quantitative PCR, immunohistochemical analysis, or western blotting was performed to detect CIP2A expression in GC patients' tissues. SGC7901/DDP cells were transfected with CIP2A siRNA. MTT assay was used to determine the DDP-sensitivity of cells. Flow cytometry was used to measure cell apoptosis. RESULTS CIP2A has higher expression in DDP-resistant GC patients. DDP-resistant GC patients with high CIP2A expression presented with poorer overall survival rates than those with low CIP2A expression. CIP2A knockdown in DDP-resistant GC cells resulted in attenuated proliferative abilities and increased apoptosis level. CIP2A depletion sensitizes DDP-resistant cells to DDP and CIP2A overexpression antagonizes DDP-sensitive cells to DDP. CIP2A influences the expression of multidrug resistance-related proteins in GC cells. CONCLUSIONS Our results suggested that CIP2A oncoprotein plays an important role in DDP resistance of GC and could serve as a novel therapeutic target for the treatment of GC patients with DDP resistance.
Collapse
Affiliation(s)
- Juanli Ji
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Weiguo Zhen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Wenjing Ma
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Chen Li
- Laboratory of Medicinal Plant, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Pengfei Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
8
|
Cai Q, Lin J, Zhang L, Lin S, Peng J. Chloroform fraction of Serratulae chinensis S. Moore suppresses proliferation and induces apoptosis via the phosphatidylinositide 3-kinase/Akt pathway in human gastric cancer cells. Oncol Lett 2018; 15:8871-8877. [PMID: 29928328 DOI: 10.3892/ol.2018.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 08/03/2017] [Indexed: 11/05/2022] Open
Abstract
The chloroform fraction of the folk Chinese medicine, Serratulae chinensis S. Moore (CSC) and its anti-inflammatory activity is well recognized. However, the molecular mechanisms underlying the beneficial anticancer effects of CSC remain largely unknown. The aim of the present study was to examine the effects of CSC on the regulation of cell proliferation and apoptosis in SGC-7901 gastric cancer cells, as well as to investigate the underlying molecular mechanisms involved. The results from the present study demonstrated that CSC treatment inhibited SGC-7901 cell viability and survival in a dose- and/or time-dependent manner. CSC treatment further induced the apoptosis of SGC-7901 cells, characterized by distinct chromatin condensation and fragmented nuclear morphology. In addition, CSC treatment suppressed protein kinase-B (Akt) phosphorylation and phosphatidylinositide 3-kinase (PI3K) expression in SGC-7901 cells, which in turn promoted cancer cell apoptosis and inhibited cell proliferation. Furthermore, CSC treatment altered the expression pattern of several key target genes of the PI3K/Akt signaling pathway through the downregulation of Cyclin D1, cyclin-dependent kinase-4 and B-cell lymphoma-2 and the upregulation of Bcl-2-associated X protein. Therefore, the results from the present study demonstrated that CSC suppressed cell survival and induced apoptosis in human gastric cancer cells, via targeting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
9
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Jin L, Si Y, Hong X, Liu P, Zhu B, Yu H, Zhao X, Qin S, Xiong M, Liu Y, Luo Z, Guo Y. Ethoxysanguinarine inhibits viability and induces apoptosis of colorectal cancer cells by inhibiting CIP2A. Int J Oncol 2018; 52:1569-1578. [PMID: 29568959 DOI: 10.3892/ijo.2018.4323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/13/2018] [Indexed: 11/05/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) an endogenous inhibitor of protein phosphatase 2A (PP2A), which can promote proliferation and transformation of several cancer types, has been shown to be a target for tumor therapy. The present study investigated the effects and underlying mechanisms of action of a novel natural compound, ethoxysanguinarine (Eth), on colorectal cancer (CRC) cells. MTT assay and flow cytometric assay found that Eth inhibited the viability and induced the apoptosis of the CRC cells. The inhibition of viability and activation of apoptosis was mediated through the Eth-induced decrease in CIP2A expression. Knockdown of CIP2A by RNA interference sensitized, whereas overexpression of CIP2A antagonized, Eth-induced viability inhibition and apoptosis. Furthermore, western blot analysis suggested that Eth inhibited phosphorylation of CIP2A downstream molecule protein kinase B via the activation of PP2A. CRC xenograft tests also confirmed the antitumor effect of Eth in vivo. These results advance our understanding of Eth-induced viability inhibition and apoptosis, implying the requirement for further investigation of Eth as a CIP2A inhibitor for cancer therapies.
Collapse
Affiliation(s)
- Lan Jin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xing Hong
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pengfei Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Beibei Zhu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Huiliang Yu
- Hubei Province Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Administration of Shennongjia National Park, Shennongjia Forestry Region, Hubei 442421, P.R. China
| | - Xinhua Zhao
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Mengyuan Xiong
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yang Guo
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
11
|
Franke NE, Kaspers GL, Assaraf YG, van Meerloo J, Niewerth D, Kessler FL, Poddighe PJ, Kole J, Smeets SJ, Ylstra B, Bi C, Chng WJ, Horton TM, Menezes RX, Musters RJP, Zweegman S, Jansen G, Cloos J. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget 2018; 7:74779-74796. [PMID: 27542283 PMCID: PMC5342701 DOI: 10.18632/oncotarget.11340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.
Collapse
Affiliation(s)
- Niels E Franke
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Floortje L Kessler
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Serge J Smeets
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chonglei Bi
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Current address: BGI-Shenzhen, Shenzhen, China
| | - Wee Joo Chng
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terzah M Horton
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rene X Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Qin S, Li J, Si Y, He Z, Zhang T, Wang D, Liu X, Guo Y, Zhang L, Li S, Li Q, Liu Y. Cucurbitacin B induces inhibitory effects via CIP2A/PP2A/Akt pathway in glioblastoma multiforme. Mol Carcinog 2018; 57:687-699. [PMID: 29393542 DOI: 10.1002/mc.22789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in multiple types of tumors and promotes the proliferation and transformation of cancer cells. However, whether CIP2A can be a new drug target for human glioblastoma multiforme (GBM) is largely unclear. In the present study, we demonstrated that the overexpression of CIP2A promotes invasive behavior in GBM, and a natural compound, cucurbitacin B (CuB), shows an anti-proliferative and anti-invasion effect in GBM cell lines. CuB effectively induces apoptosis, downregulates CIP2A expression and its downstream signaling molecule, phospho-Akt, and upregulates protein phosphatase 2A (PP2A) activity. Overexpression of CIP2A reduced CuB-inhibited growth and invasion in GBM cells. Silencing CIP2A enhanced CuB-induced invasion inhibition and apoptosis in GBM. CuB combined with cisplatin synergistically inhibited GBM cells. CuB also inhibited tumor growth in murine models. Western blot results further revealed that CuB downregulates CIP2A, and phospho-Akt in vivo. In summary, inhibition of CIP2A determines the effects of CuB-induced invasive behavior inhibition and apoptosis in GBM cells. These characteristics render CuB as a promising candidate drug for further development and for designing new effective CIP2A inhibitors.
Collapse
Affiliation(s)
- Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Li
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhongwei He
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dawei Wang
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yang Guo
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiang Li
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.,Laboratory of Molecular Target Therapy of Cancer, Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
13
|
Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2017; 96:182-193. [PMID: 29107183 DOI: 10.1016/j.biocel.2017.10.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Collapse
|
14
|
Liu X, Cao W, Qin S, Zhang T, Zheng J, Dong Y, Ming P, Cheng Q, Lu Z, Guo Y, Zhang B, Liu Y. Overexpression of CIP2A is associated with poor prognosis in multiple myeloma. Signal Transduct Target Ther 2017; 2:17013. [PMID: 29263916 PMCID: PMC5661621 DOI: 10.1038/sigtrans.2017.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous protein phosphatase 2A (PP2A) inhibitor, has been identified as an oncoprotein in promoting cancer initiation and progression of several types of cancer. However, the expression and the role played by CIP2A in the pathogenesis of multiple myeloma (MM) remain unclear. In this study, we showed that CIP2A was overexpressed in human MM cell lines and MM patients' bone marrow tissues. Clinicopathologic analysis showed that CIP2A expression was significantly correlated with clinical stage and percent of plasma cells in bone marrow. Kaplan-Meier analysis revealed that patients with high CIP2A expression presented with poorer overall survival rates than those with low CIP2A expression. Moreover, CIP2A knockdown in MM cells resulted in attenuated proliferative abilities. In addition, CIP2A depletion sensitizes dexamethasone (Dex)-resistant cells to Dex. The effect of CIP2A on proliferation and Dex therapy was mediated by the inhibition of PP2A, which in turn activated Akt. In vivo studies confirmed that CIP2A regulated MM tumorigenesis and the phosphorylation of Akt. Taken together, our results suggest that CIP2A oncoprotein plays an important role in MM progression and could serve as a prognosis marker and a novel therapeutic target for the treatment of patients with MM.
Collapse
Affiliation(s)
- Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences; Hubei University of Medicine, Shiyan, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences; Hubei University of Medicine, Shiyan, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences; Hubei University of Medicine, Shiyan, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Dong
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pinghong Ming
- Department of Pathology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Qian Cheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zheng Lu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yang Guo
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences; Hubei University of Medicine, Shiyan, China
| | - Baofu Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences; Hubei University of Medicine, Shiyan, China
| |
Collapse
|
15
|
Huang Q, Qin S, Yuan X, Zhang L, Ji J, Liu X, Ma W, Zhang Y, Liu P, Sun Z, Zhang J, Liu Y. Arctigenin inhibits triple-negative breast cancers by targeting CIP2A to reactivate protein phosphatase 2A. Oncol Rep 2017; 38:598-606. [PMID: 28560452 DOI: 10.3892/or.2017.5667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
We have shown that a novel STAT3 inhibitor arctigenin (Atn) induces significant cytotoxicity in triple-negative breast cancer (TNBC) cells. This study further delineated molecular mechanisms where by Atn triggered cytotoxicity in TNBC cells. We found Atn can also inhibit metastasis in TNBC cells through cancerous inhibitor of protein phosphatase 2A (CIP2A) pathway. CIP2A is an endogenous inhibitor of protein phosphatase 2A (PP2A), which can increase the migration and invasion of various cancer cells. PP2A is a tumor suppressor, which is functionally defective in various cancers. Atn-induced metastasis inhibition was associated with reactivation of PP2A, downregulation of CIP2A and Akt phosphorylation. Silencing CIP2A enhanced Atn-induced metastasis inhibition and apoptosis in TNBCs. Furthermore, ectopic expression of CIP2A or inhibition of PP2A in TNBC cells abolished the effects of Atn. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A, at least in part, promotes the anti-metastasis effect induced by Atn. Our findings disclose the novel therapeutic mechanism of this targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.
Collapse
Affiliation(s)
- Qiuyue Huang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoning Yuan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Juanli Ji
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenjing Ma
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yunfei Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pengfei Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiting Sun
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jingxuan Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
16
|
Liu X, Duan C, Ji J, Zhang T, Yuan X, Zhang Y, Ma W, Yang J, Yang L, Jiang Z, Yu H, Liu Y. Cucurbitacin B induces autophagy and apoptosis by suppressing CIP2A/PP2A/mTORC1 signaling axis in human cisplatin resistant gastric cancer cells. Oncol Rep 2017; 38:271-278. [DOI: 10.3892/or.2017.5648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
|
17
|
Liu CY, Hsieh FS, Chu PY, Tsai WC, Huang CT, Yu YB, Huang TT, Ko PS, Hung MH, Wang WL, Shiau CW, Chen KF. Carfilzomib induces leukaemia cell apoptosis via inhibiting ELK1/KIAA1524 (Elk-1/CIP2A) and activating PP2A not related to proteasome inhibition. Br J Haematol 2017; 177:726-740. [PMID: 28340282 DOI: 10.1111/bjh.14620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
Enhancing the tumour suppressive activity of protein phosphatase 2A (PP2A) has been suggested to be an anti-leukaemic strategy. KIAA1524 (also termed CIP2A), an oncoprotein inhibiting PP2A, is associated with disease progression in chronic myeloid leukaemia and may be prognostic in cytogenetically normal acute myeloid leukaemia. Here we demonstrated that the selective proteasome inhibitor, carfilzomib, induced apoptosis in sensitive primary leukaemia cells and in sensitive leukaemia cell lines, associated with KIAA1524 protein downregulation, increased PP2A activity and decreased p-Akt, but not with the proteasome inhibition effect of carfilzomib. Ectopic expression of KIAA1524, or pretreatment with the PP2A inhibitor, okadaic acid, suppressed carfilzomib-induced apoptosis and KIAA1524 downregulation in sensitive cells, whereas co-treatment with the PP2A agonist, forskolin, enhanced carfilzomib-induced apoptosis in resistant cells. Mechanistically, carfilzomib affected KIAA1524 transcription through disturbing ELK1 (Elk-1) binding to the KIAA1524 promoter. Moreover, the drug sensitivity and mechanism of carfilzomib in xenograft mouse models correlated well with the effects of carfilzomib on KIAA1524 and p-Akt expression, as well as PP2A activity. Our data disclosed a novel drug mechanism of carfilzomib in leukaemia cells and suggests the potential therapeutic implication of KIAA1524 in leukaemia treatment.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Comprehensive Breast Health Centre, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Chun Tsai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Yuan-Bin Yu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Centre, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Lun Wang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Liu CY, Hu MH, Hsu CJ, Huang CT, Wang DS, Tsai WC, Chen YT, Lee CH, Chu PY, Hsu CC, Chen MH, Shiau CW, Tseng LM, Chen KF. Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget 2016; 7:9135-49. [PMID: 26824320 PMCID: PMC4891031 DOI: 10.18632/oncotarget.7035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hung Hu
- Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Jung Hsu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Duen-Shian Wang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chun Tsai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ting Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Chi Hsu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Toda-Ishii M, Akaike K, Suehara Y, Mukaihara K, Kubota D, Kohsaka S, Okubo T, Mitani K, Mogushi K, Takagi T, Kaneko K, Yao T, Saito T. Clinicopathological effects of protein phosphatase 2, regulatory subunit A, alpha mutations in gastrointestinal stromal tumors. Mod Pathol 2016; 29:1424-1432. [PMID: 27469332 DOI: 10.1038/modpathol.2016.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Recently, several studies have reported that dysfunctions in protein phosphatase 2A (PP2A) caused by alterations in protein phosphatase 2 regulatory subunit A, alpha (PPP2R1A) are responsible for tumorigenesis and tumor progression in several types of cancers. The impact of PPP2R1A mutations remains unknown in gastrointestinal stromal tumors (GISTs), although mutations in KIT and PDGFRA, which result in constitutive activation of the receptor tyrosine kinase pathway, are important in GIST tumorigenesis. In this study, we performed mutation analysis of PPP2R1A to examine the frequency of PPP2R1A mutations and their clinicopathological correlation in 94 GIST cases. In addition, we performed an in vitro analysis to investigate the effects of PPP2R1A mutations on cell proliferation and kinase phosphorylation in GIST cells. Seventeen GIST cases (18%) harbored mutations in PPP2R1A. All but one of these 17 cases harbored a KIT, PDGFRA, HRAS, NRAS, or KRAS mutation as the oncogenic driver mutation, and the remaining case was immunohistochemically negative for succinate dehydrogenase B (SDHB). Multivariate analysis showed that larger tumor size, higher mitotic rate, and PPP2R1A mutation are independent prognostic factors for overall survival; however, PPP2R1A mutation was not an independent prognostic factor for disease-free survival. The transduction of GIST cells with mutant PPP2R1A induced an accelerated growth rate via increased phosphorylation of Akt1/2, ERK1/2, and WNK1, a kinase associated with angiogenesis. In addition, the transduction of GIST cells with mutant PPP2R1A caused increased c-kit phosphorylation, suggesting that c-kit is also a target of PP2A, reinforcing the tumorigenic capabilities of c-kit. Furthermore, the transducing GIST cells with wild-type PP2A dephosphorylated mutant c-kit. This study provides a new insight into the biology of GISTs and their phosphatase activity, and activated PP2A could be a therapeutic target in GISTs.
Collapse
Affiliation(s)
- Midori Toda-Ishii
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Keiko Mitani
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kaoru Mogushi
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Cai F, Zhang L, Xiao X, Duan C, Huang Q, Fan C, Li J, Liu X, Li S, Liu Y. Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/Adriamycin cells. Oncol Rep 2016; 36:1180-6. [DOI: 10.3892/or.2016.4892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/02/2016] [Indexed: 11/05/2022] Open
|
21
|
Cancerous Inhibitor of PP2A Silencing Inhibits Proliferation and Promotes Apoptosis in Human Multiple Myeloma Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6864135. [PMID: 27144172 PMCID: PMC4837246 DOI: 10.1155/2016/6864135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
Abstract
Multiple myeloma is the second most prevalent type of blood cancer, representing approximately 1% of all cancers and 2% of all cancer deaths. There is therefore a strong need to identify critical targets in multiple myeloma neoplasia and progression. Cancerous inhibitor of PP2A (CIP2A) is a human oncoprotein that regulates cancer cell viability and anchorage-independent growth and induces apoptosis. The present study investigated CIP2A function in the human multiple myeloma cell lines RPMI-8226 and NCI-H929 to determine whether it can serve as a potential therapeutic target. CIP2A was silenced in the cells by transfection of short interfering RNA and cell proliferation and apoptosis were evaluated by a tetrazolium salt-based assay and flow cytometry, respectively. CIP2A knockdown inhibited proliferation and induced apoptosis in RPMI-8226 and NCI-H929 cells and decreased the phosphorylation of phosphoinositide 3-kinase (PI3K) p85, AKT1, and mammalian target of rapamycin (mTOR) without affecting total protein levels. Treatment of CIP2A-depletion cells with insulin-like growth factor 1 decreased the effects of CIP2A inhibition on cell viability and apoptosis. These results indicate that CIP2A modulates myeloma cell proliferation and apoptosis via PI3K/AKT/mTOR signaling and suggest that it can potentially serve as a drug target for the treatment of multiple myeloma.
Collapse
|
22
|
Engür S, Dikmen M, Öztürk Y. Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacol Immunotoxicol 2015; 38:87-97. [DOI: 10.3109/08923973.2015.1122616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Chao TT, Wang CY, Chen YL, Lai CC, Chang FY, Tsai YT, Chao CHH, Shiau CW, Huang YCT, Yu CJ, Chen KF. Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A. Oncotarget 2015; 6:2164-79. [PMID: 25537503 PMCID: PMC4385843 DOI: 10.18632/oncotarget.2941] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
Afatinib has anti-tumor effect in non-small cell lung carcinoma (NSCLC) with epidermal growth factor receptor (EGFR) mutation. We found afatinib can also induce apoptosis in NSCLC cells without EGFR mutation through CIP2A pathway. Four NSCLC cell lines (H358 H441 H460 and A549) were treated with afatinib to determine their sensitivity to afatinib-induced cell death and apoptosis. The effects of CIP2A on afatinib-induced apoptosis were confirmed by overexpression and knockdown of CIP2A expression in the sensitive and resistant cells, respectively. Reduction of Elk-1 binding to the CIP2A promoter and suppression of CIP2A transcription were analyzed. In vivo efficacy of afatinib against H358 and H460 xenografts tumors were also determined in nude mice. Afatinib induced significant cell death and apoptosis in H358 and H441 cells, but not in H460 or A549 cells. The apoptotic effect of afatinib in sensitive cells was associated with downregulation of CIP2A, promotion of PP2A activity and decrease in AKT phosphorylation. Afatinib suppressed CIP2A at the gene transcription level by reducing the promoter binding activity of Elk-1. Clinical samples showed that higher CIP2A expression predicted a poor prognosis and Elk-1 and CIP2A expressions were highly correlated. In conclusion, afatinib induces apoptosis in NSCLC without EGFR mutations through Elk-1/CIP2A/PP2A/AKT pathway.
Collapse
Affiliation(s)
- Ting-Ting Chao
- Medical Research Center, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Yi Wang
- Medical Research Center, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Fang-Yu Chang
- Medical Research Center, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yi-Ting Tsai
- Medical Research Center, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chung-Hao H Chao
- Instrumentation Resource Center, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Chin T Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
CIP2A is associated with multidrug resistance in cervical adenocarcinoma by a P-glycoprotein pathway. Tumour Biol 2015; 37:2673-82. [PMID: 26404133 DOI: 10.1007/s13277-015-4032-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified oncoprotein. Here, we investigated its role in the formation of multidrug resistance (MDR) of cervical adenocarcinoma in vitro and in vivo. MTT assay showed that knockdown of CIP2A expression increased the drug sensitivity of HeLa and Dox-resistant HeLa cells (HeLa-Dox) to doxorubicin, cisplatin, and paclitaxel significantly, while overexpression of CIP2A decreased the sensitivity of HeLa cells to chemo-drugs dramatically. When treated with different chemotherapeutics, CIP2A and P-glycoprotein (P-gp) protein levels were increased in HeLa cells simultaneously. In accordance with it, knockdown or overexpression of CIP2A expression inhibited or increased the P-gp expression in the transcription level separately. The effects of CIP2A on P-gp expression was achieved partly through its regulation on the transcription factor E2F1. Moreover, the interference of CIP2A could decrease the P-gp protein activity elucidated by Rhodamine 123 (Rh123) efflux assay in HeLa and HeLa/Dox cells. In the in vivo level, confocal microscopy data demonstrated the strong co-localization of CIP2A and P-gp protein in HeLa cells, and CIP2A protein expression was significantly associated with that of P-gp in cervical adenocarcinoma tissues. Thus, CIP2A is involved in regulating multidrug resistance of cervical adenocarcinoma upon chemotherapy by enhancing P-gp expression through E2F1. CIP2A may be an attractive target in anticancer strategies to improve the effect of chemotherapy in cervical adenocarcinoma.
Collapse
|
25
|
Ohama T. [Targeting PP2A inhibitors as a novel anti-cancer strategy
]. Nihon Yakurigaku Zasshi 2015; 145:293-8. [PMID: 26063151 DOI: 10.1254/fpj.145.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R, Cui J. YSY01A, a Novel Proteasome Inhibitor, Induces Cell Cycle Arrest on G2 Phase in MCF-7 Cells via ERα and PI3K/Akt Pathways. J Cancer 2015; 6:319-26. [PMID: 25767601 PMCID: PMC4349871 DOI: 10.7150/jca.10733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/15/2014] [Indexed: 11/05/2022] Open
Abstract
Given that the proteasome is essential for multiple cellular processes by degrading diverse regulatory proteins, inhibition of the proteasome has emerged as an attractive target for anti-cancer therapy. YSY01A is a novel small molecule compound targeting the proteasome. The compound was found to suppress viability of MCF-7 cells and cause limited cell membrane damage as determined by sulforhodamine B assay (SRB) and CytoTox 96(®) non-radioactive cytotoxicity assay. High-content screening (HCS) further shows that YSY01A treatment induces cell cycle arrest on G2 phase within 24 hrs. Label-free quantitative proteomics (LFQP), which allows extensive comparison of cellular responses following YSY01A treatment, suggests that various regulatory proteins including cell cycle associated proteins and PI3K/Akt pathway may be affected. Furthermore, YSY01A increases p-CDC-2, p-FOXO3a, p53, p21(Cip1) and p27(Kip1) but decreases p-Akt, p-ERα as confirmed by Western blotting. Therefore, YSY01A represents a potential therapeutic for breast cancer MCF-7 by inducing G2 phase arrest via ERα and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Bingjie Xue
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Wei Huang
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Xia Yuan
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Bo Xu
- 2. Instrumental Analysis Center of State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Yaxin Lou
- 3. Lab of Proteomics Medical and Healthy Analytical Center, Peking University, Beijing, China
| | - Quan Zhou
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Fuxiang Ran
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Zemei Ge
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Runtao Li
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Jingrong Cui
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| |
Collapse
|
27
|
Khanna A, Pimanda JE. Clinical significance of cancerous inhibitor of protein phosphatase 2A in human cancers. Int J Cancer 2015; 138:525-32. [DOI: 10.1002/ijc.29431] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Anchit Khanna
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales (UNSW) Medicine Department; Sydney New South Wales 2052 Australia
| | - John E. Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales (UNSW) Medicine Department; Sydney New South Wales 2052 Australia
- Department of Haematology; the Prince of Wales Hospital; Randwick New South Wales Australia
| |
Collapse
|
28
|
Haesen D, Sents W, Lemaire K, Hoorne Y, Janssens V. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 2014; 4:347. [PMID: 25566494 PMCID: PMC4263090 DOI: 10.3389/fonc.2014.00347] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022] Open
Abstract
Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Ward Sents
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| |
Collapse
|
29
|
Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A-dependent phospho-Akt inactivation in estrogen receptor-negative human breast cancer cells. Breast Cancer Res 2014; 16:431. [PMID: 25228280 PMCID: PMC4303112 DOI: 10.1186/s13058-014-0431-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/21/2014] [Indexed: 11/11/2022] Open
Abstract
Introduction Tamoxifen, a selective estrogen receptor (ER) modulator, may affect cancer cell survival through mechanisms other than ER antagonism. In the present study, we tested the efficacy of tamoxifen in a panel of ER-negative breast cancer cell lines and examined the drug mechanism. Methods In total, five ER-negative breast cancer cell lines (HCC-1937, MDA-MB-231, MDA-MB-468, MDA-MB-453 and SK-BR-3) were used for in vitro studies. Cellular apoptosis was examined by flow cytometry and Western blot analysis. Signal transduction pathways in cells were assessed by Western blot analysis. The in vivo efficacy of tamoxifen was tested in xenograft nude mice. Results Tamoxifen induced significant apoptosis in MDA-MB-231, MDA-MB-468, MDA-MB-453 and SK-BR-3 cells, but not in HCC-1937 cells. Tamoxifen-induced apoptosis was associated with inhibition of cancerous inhibitor of protein phosphatase 2A (CIP2A) and phospho-Akt (p-Akt) in a dose-dependent manner. Ectopic expression of either CIP2A or Akt protected MDA-MB-231 cells from tamoxifen-induced apoptosis. In addition, tamoxifen increased protein phosphatase 2A (PP2A) activity, and tamoxifen-induced apoptosis was attenuated by the PP2A antagonist okadaic acid in the sensitive cell lines, but not in resistant HCC-1937 cells. Moreover, silencing CIP2A by small interfering RNA sensitized HCC-1937 cells to tamoxifen-induced apoptosis. Furthermore, tamoxifen regulated CIP2A protein expression by downregulating CIP2A mRNA. Importantly, tamoxifen inhibited the in vivo growth of MDA-MB-468 xenograft tumors in association with CIP2A downregulation, whereas tamoxifen had no significant effect on CIP2A expression and anti-tumor growth in HCC-1937 tumors. Conclusions Inhibition of CIP2A determines the effects of tamoxifen-induced apoptosis in ER-negative breast cancer cells. Our data suggest a novel “off-target“ mechanism of tamoxifen and suggest that CIP2A/PP2A/p-Akt signaling may be a feasible anti-cancer pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0431-9) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Chao TT, Wang CY, Lai CC, Chen YL, Tsai YT, Chen PT, Lin HI, Huang YCT, Shiau CW, Yu CJ, Chen KF. TD-19, an Erlotinib Derivative, Induces Epidermal Growth Factor Receptor Wild-Type Nonsmall-Cell Lung Cancer Apoptosis through CIP2A-Mediated Pathway. J Pharmacol Exp Ther 2014; 351:352-8. [DOI: 10.1124/jpet.114.215418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
31
|
Wang CY, Chao TT, Chang FY, Chen YL, Tsai YT, Lin HI, Huang YCT, Shiau CW, Yu CJ, Chen KF. CIP2A mediates erlotinib-induced apoptosis in non-small cell lung cancer cells without EGFR mutation. Lung Cancer 2014; 85:152-60. [DOI: 10.1016/j.lungcan.2014.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/03/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
|
32
|
Erlotinib derivative inhibits hepatocellular carcinoma by targeting CIP2A to reactivate protein phosphatase 2A. Cell Death Dis 2014; 5:e1359. [PMID: 25077545 PMCID: PMC4123111 DOI: 10.1038/cddis.2014.325] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/23/2022]
Abstract
Protein phosphatase 2A (PP2A) is a tumor suppressor, which is functionally defective in various cancers. Previously, we found that PP2A activity determined the anticancer effect of bortezomib and erlotinib in hepatocellular carcinoma (HCC) cells. Here, we tested a novel erlotinib derivative, TD52, in four HCC cell lines, PLC5, Huh-7, Hep3B and Sk-Hep1. Using MTT and flow cytometry, we showed that TD52 had more potent apoptotic effects than erlotinib in HCC cells. TD52-induced apoptosis was associated with dose- and time- dependent reactivation of PP2A and downregulation of cancerous inhibitor of protein phosphatase 2A (CIP2A) and p-Akt. Inhibition of PP2A or ectopic expression of CIP2A or Akt in PLC5 cells abolished the effects of TD52. Furthermore, we demonstrated that TD52 affected the binding of Elk-1 to the proximal promoter of the CIP2A gene, thus downregulating transcription of CIP2A. Importantly, TD52-induced tumor inhibition was associated with reactivation of PP2A and downregulation of CIP2A and p-Akt in vivo. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A determines the apoptotic effect induced by TD52. Our findings disclose the therapeutic mechanism of this novel targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.
Collapse
|
33
|
De P, Carlson J, Leyland-Jones B, Dey N. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands. Oncotarget 2014; 5:4581-602. [PMID: 25015035 PMCID: PMC4148086 DOI: 10.18632/oncotarget.2127] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an "oncogenic nexus" by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head and neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an "oncogenic nexus" of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers.
Collapse
Affiliation(s)
- Pradip De
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| | - Jennifer Carlson
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
| | - Brian Leyland-Jones
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| | - Nandini Dey
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
34
|
Ding Y, Wang Y, Ju S, Wu X, Zhu W, Shi F, Mao L. Role of CIP2A in the antitumor effect of bortezomib in colon cancer. Mol Med Rep 2014; 10:387-92. [PMID: 24789441 DOI: 10.3892/mmr.2014.2173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/13/2014] [Indexed: 11/05/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as an oncoprotein that is able to promote the proliferation of cancer cells. The role of CIP2A in the anticancer activity of bortezomib in colon cancer remains to be elucidated. In the present study, the antitumor effect of bortezomib was investigated and the role of CIP2A in determining the effect on colon cancer cells was identified. In the present study, bortezomib demonstrated an antitumor effect, as observed by WST‑1 assay and flow cytometry. In addition, the mRNA and protein level of CIP2A was inhibited in a dose‑dependent manner by bortezomib with quantitative PCR (qPCR) and western blotting. Furthermore, the inhibition of CIP2A with small interfering RNA by treatment with bortezomib inhibited proliferation, increased apoptosis and attenuated the invasion of the cells. Finally, the in vivo data demonstrated that bortezomib was able to decrease the growth of tumors, and that CIP2A was downregulated in the LoVo tumors treated with bortezomib. Therefore, CIP2A was shown to be important in the bortezomib‑induced inhibitory effect on colon cancer.
Collapse
Affiliation(s)
- Yayun Ding
- Department of Laboratory Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yueguo Wang
- Laboratory Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaoqing Ju
- Laboratory Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinghua Wu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wencai Zhu
- Laboratory Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Shi
- Department of Laboratory Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liping Mao
- Laboratory Department, Nantong Third People's Hospital, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Shi F, Ding Y, Ju S, Wu X, Cao S. Expression and prognostic significance of CIP2A in cutaneous malignant melanoma. Biomarkers 2013; 19:70-6. [PMID: 24369732 DOI: 10.3109/1354750x.2013.871752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We investigated the expression and clinical significance of Cancerous inhibitor of protein phosphatase 2A (CIP2A) in Cutaneous malignant melanoma (CMM). METHODS CIP2A expression was analyzed by immunohistochemistry and western blot. We tested the invasion and migration capability of A375 cells with Matrigel invasion assay, Scratch migration assay and Matrigel migration assay after down-regulating CIP2A expression using siRNA. RESULTS CIP2A immunostaining level was correlated with Breslow thickness, Clark's Level and lymphovascular invasion. High-CIP2A expression implied poor survival for patients. Downregulation of CIP2A attenuated metastasis of CMM cells. CONCLUSIONS CIP2A may serve as a novel marker to predict the prognosis for CMM patients.
Collapse
Affiliation(s)
- Feng Shi
- Department of Dermatology and Venereology, Nantong University , Nantong, Jiangsu , China
| | | | | | | | | |
Collapse
|
36
|
Abstract
PP2A is a family of mammalian serine/threonine phosphatases that is involved in the control of many cellular functions including protein synthesis, cellular signaling, cell cycle determination, apoptosis, metabolism, and stress responses through the negative regulation of signaling pathways initiated by protein kinases. Rapid progress is being made in the understanding of PP2A complex and its functions. Emerging studies have correlated changes in PP2A with human diseases, especially cancer. PP2A is comprised of 3 subunits: a catalytic subunit, a scaffolding subunit, and a regulatory subunit. The alternations of the subunits have been shown to be in association with many human malignancies. Therapeutic agents targeting PP2A inhibitors or activating PP2A directly have shed light on the therapy of cancers. This review focuses on PP2A structure, cancer-associated mutations, and the targeting of PP2A-related molecules to restore or reactivate PP2A in anticancer therapy, especially in digestive system cancer therapy.
Collapse
|
37
|
Gonnella R, Santarelli R, Farina A, Granato M, D'Orazi G, Faggioni A, Cirone M. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:79. [PMID: 24422998 PMCID: PMC3874756 DOI: 10.1186/1756-9966-32-79] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Background Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. Results We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. Conclusions KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib, but on the other hand, offer an Achilles heel, rendering the infected cells more sensitive to other treatments such as AKT or glycolysis inhibitors. These therapeutic strategies can be exploited in the anticancer therapy of KSHV-associated malignancies.
Collapse
|