1
|
Intermediate between Idiopathic Hypereosinophilia and Chronic Eosinophilic Leukemia: A Report of Two Hypereosinophilic Cases with Possible Novel Molecular Mutations. Case Rep Hematol 2021; 2021:1142124. [PMID: 34513100 PMCID: PMC8426067 DOI: 10.1155/2021/1142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
To distinguish a reactive eosinophilia from its malignant counterpart is challenging. Establishing clonality of the eosinophils is crucial and considered the determining factor for establishing a diagnosis. Cases of hypereosinophilia without clear reactive etiologies, no evidence of end-organ damage, normal cytogenetics, and no molecular mutations are termed as “Idiopathic Hypereosinophilia (IHE).” For cases which lie between the spectrum of chronic eosinophilic leukemia (CEL) and IHE, identification of underlying molecular abnormalities might be helpful in better understanding the disease process and prognosis. Here, we report two cases of hypereosinophilia in which five possible novel molecular mutations were identified by targeted next-generation sequencing (NGS) analysis. They were FBXW7, KM2A, TCF3, ERBB4, and MET. With multiple genetic mutations, these cases could be classified as chronic eosinophilic leukemia. Both these young patients responded well to steroid therapy. While targeted NGS is a useful tool in identifying new molecular mutation associated with hypereosinophilia, our cases raise the question of further investigating this entity and if there is a possibility of an intermediate category lying between the spectrum of CEL and IHE. Defining hypereosinophilia with clonal molecular abnormality as a malignant process may need to be revisited. Even though attempts are being made to identify mutations in IHE, it might be more significant clinically to differentiate them based on response to steroid therapy and prognosis.
Collapse
|
2
|
Xie W, Tang G, Wang E, Kim Y, Cloe A, Shen Q, Zhou Y, Garcia-Manero G, Loghavi S, Hu AY, Wang S, Bueso-Ramos CE, Kantarjian HM, Medeiros LJ, Hu S. t(11;16)(q23;p13)/KMT2A-CREBBP in hematologic malignancies: presumptive evidence of myelodysplasia or therapy-related neoplasm? Ann Hematol 2020; 99:487-500. [PMID: 32006151 DOI: 10.1007/s00277-020-03909-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Fusion partners of KMT2A affect disease phenotype and influence the current World Health Organization classification of hematologic neoplasms. The t(11;16)(q23;p13)/KMT2A-CREBBP is considered presumptive evidence of a myelodysplastic syndrome (MDS) and a MDS-related cytogenetic abnormality in the classification of acute myeloid leukemia (AML). Here, we report 18 cases of hematologic neoplasms with t(11;16). There were 8 males and 10 females with a median age of 51.9 years at time of detection of t(11;16). Of 17 patients with enough clinical information and pathological materials for review, 16 had a history of cytotoxic therapies for various malignancies including 12/15 patients who received topoisomerase II inhibitors, and 15 were classified as having therapy-related neoplasms. The median interval from the diagnosis of primary malignancy to the detection of t(11;16) was 23.2 months. Dysplasia, usually mild, was observed in 7/17 patients. Blasts demonstrated monocytic differentiation in 8/8 patients who developed AML at the time or following detection of t(11;16). t(11;16) was observed as the sole chromosomal abnormality in 10/18 patients. KMT2A rearrangement was confirmed in 11/11 patients. The median survival from the detection of t(11;16) was 15.4 months. In summary, t(11;16)(q23;p13) is rare and overwhelmingly associated with prior exposure of cytotoxic therapy. Instead of being considered presumptive evidence of myelodysplasia, we suggest that the detection of t(11;16) should automatically prompt a search for a history of malignancy and cytotoxic therapy so that proper risk stratification and clinical management are made accordingly. The dismal outcome of patients with t(11;16) is in keeping with that of therapy-related neoplasms.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CREB-Binding Protein/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 16/genetics
- Databases, Factual
- Female
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/mortality
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasms, Second Primary/drug therapy
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/mortality
- Oncogene Proteins, Fusion/genetics
- Risk Assessment
- Topoisomerase II Inhibitors/administration & dosage
- Translocation, Genetic
Collapse
Affiliation(s)
- Wei Xie
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Guiling Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Young Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Adam Cloe
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Qi Shen
- Department of Pathology, Florida Hospital, Orlando, FL, USA
| | - Yi Zhou
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Aileen Y Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Sa Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Zhou W, Xu S, Ying Y, Zhou R, Chen X. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1). DNA Cell Biol 2017; 36:966-975. [PMID: 29035583 DOI: 10.1089/dna.2017.3846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shilin Xu
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yi Ying
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016; 6:36754. [PMID: 27824156 PMCID: PMC5099876 DOI: 10.1038/srep36754] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aberrations, including X-chromosome loss, 4q and 14q deletion, chromosome 7 inversion, balanced and unbalanced two and three way translocations: t(3;10), der(3)t(3;13), der(5)t(18;5;14), t(10;16), der(18)t(7;18), der(18)t(21;18;5), der(21;21;18;5) and der(22)t(9;22). CCRF-CEM consisted of two and CEM/ADR5000 of five major sub-clones, indicating genetic tumor heterogeneity. Loss of 3q27.1 in CEM/ADR5000 caused down-regulation of ABCC5 and ABCF3 expression, Xq28 loss down-regulated ABCD1 expression. ABCB1, the most well-known MDR gene, was 448-fold up-regulated due to 7q21.12 amplification. In addition to well-known drug resistance genes, numerous novel genes and genomic aberrations were identified. Transcriptomics and genetics in CEM/AD5000 cells unravelled a range of MDR mechanisms, which is much more complex than estimated thus far. This may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|