1
|
Galasso M, Salaorni V, Moia R, Mozzo V, Lovato E, Cosentino C, Perbellini O, Gambino S, Lovato O, Carazzolo ME, Ferrarini I, Quaglia FM, Donadelli M, Romanelli MG, Visco C, Krampera M, Gaidano G, Scupoli MT. CAT rs1001179 Single Nucleotide Polymorphism Identifies an Aggressive Clinical Behavior in Chronic Lymphocytic Leukemia. Hematol Oncol 2024; 42:e70002. [PMID: 39540258 DOI: 10.1002/hon.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an extremely variable clinical course. Although several parameters have been shown to be associated with clinical outcomes in patients with CLL, there remains substantial intragroup clinical heterogeneity in otherwise molecularly and staging homogeneous CLL subgroups. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course and that higher CAT expression is associated with the presence of the rs1001179 single nucleotide polymorphism (SNP) T allele in the CAT promoter. Herein, we genotyped CLL patients for CAT rs1001179 SNP in an exploratory study (n = 235) and in a sequential independent validation study (n = 531). Time-to-event modeling analyses for time-to-first-treatment (TTFT) from the two patients' cohorts showed that TT genotype was associated with a shorter TTFT, independently of other currently used prognostic parameters in CLL. Moreover, the TT genotype identifies CLL patients with a faster clinical progression even within subgroups of patients with low-risk biological and clinical hallmarks. In conclusion, our data show that the TT genotype identifies CLL patients with a shorter TTFT, pointing to this SNP as a possible prognostic factor, which can improve patients' risk stratification leading to better patient management and personalized therapeutic choices.
Collapse
Affiliation(s)
- Marilisa Galasso
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
| | - Vittoria Salaorni
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Moia
- Department of Translational Medicine, Division of Hematology, University of Piemonte Orientale, Novara, Italy
| | | | - Ester Lovato
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Chiara Cosentino
- Department of Translational Medicine, Division of Hematology, University of Piemonte Orientale, Novara, Italy
| | - Omar Perbellini
- UOC di Ematologia - Azienda ULSS 8 Berica, Vicenza, Italy
- UOSD Diagnostica Genetica e Genomica - Azienda ULSS 8 Berica, Vicenza, Italy
| | - Simona Gambino
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
| | - Ornella Lovato
- Laboratory of Medical Research, University of Verona, Verona, Italy
| | | | - Isacco Ferrarini
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Francesca M Quaglia
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section Biology and Genetics, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Mauro Krampera
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Gianluca Gaidano
- Department of Translational Medicine, Division of Hematology, University of Piemonte Orientale, Novara, Italy
| | - Maria T Scupoli
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Laboratory of Medical Research, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
3
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
4
|
Galasso M, Dalla Pozza E, Chignola R, Gambino S, Cavallini C, Quaglia FM, Lovato O, Dando I, Malpeli G, Krampera M, Donadelli M, Romanelli MG, Scupoli MT. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia. Cell Mol Life Sci 2022; 79:521. [PMID: 36112236 PMCID: PMC9481481 DOI: 10.1007/s00018-022-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-β transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.
Collapse
Affiliation(s)
- Marilisa Galasso
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simona Gambino
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Francesca Maria Quaglia
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ornella Lovato
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ilaria Dando
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Giorgio Malpeli
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Massimo Donadelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Maria G Romanelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Maria T Scupoli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
5
|
Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, Nguyen-Khac F, Garçon L, Marolleau JP, Ghamlouch H. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:228. [PMID: 33115525 PMCID: PMC7594454 DOI: 10.1186/s13046-020-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/17/2023]
Abstract
Background Novel, less toxic, cost-effective and safe therapeutic strategies are needed to improve treatment of chronic lymphocytic leukemia (CLL). Ascorbic acid (AA, vitamin C) has shown a potential anti-cancer therapeutic activity in several cancers. However, the anti-cancer effects of ascorbic acid on CLL B-cells have not been extensively studied. We aimed in this study to evaluate the in vitro therapeutic activity using clinically relevant conditions. Methods Primary CLL B-cells and two CLL cell lines were exposed to a dose that is clinically achievable by AA oral administration (250 μM), and cell death and potential mechanisms were assessed. The role of the protective CLL microenvironment was studied. Synergistic interaction between AA and CLL approved drugs (Ibrutinib, Idelalisib and Venetoclax) was also evaluated. Results Ascorbic acid is cytotoxic for CLL B-cells at low dose (250 μM) but spares healthy B-cells. Ascorbic-acid-induced cytotoxicity involved pro-oxidant damage through the generation of reactive oxygen species in the extracellular media and in CLL cells, and induced caspase-dependent apoptosis. We also found that AA treatment overcame the supportive survival effect provided by microenvironment including bone marrow mesenchymal stem cells, T-cell cues (CD40L + IL-4), cytokines and hypoxia. Our data suggest that resistance to AA could be mediated by the expression of the enzyme catalase in some CLL samples and by the glucose metabolite pyruvate. We also demonstrated that AA synergistically potentiates the cytotoxicity of targeted therapies used in or being developed for CLL. Conclusion These preclinical results point to AA as an adjuvant therapy with potential to further improve CLL treatments in combination with targeted therapies. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01738-0.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Cathy Gomila
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Hakim Ouled-Haddou
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Marie Naudot
- EA 7516, CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Cécile Doualle
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France
| | - Florence Nguyen-Khac
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Sorbonne Université, APHP, Service d'Hématologie Biologique, Paris, France
| | - Loïc Garçon
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France.,Service d'hématologie Biologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Hussein Ghamlouch
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,INSERM U1170, équipe labélisée Ligue Nationale Contre le Cancer, Gustave Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France.
| |
Collapse
|
6
|
Chanas-Larue A, Villalpando-Rodriguez GE, Henson ES, Johnston JB, Gibson SB. Antihistamines are synergistic with Bruton's tyrosine kinase inhibiter ibrutinib mediated by lysosome disruption in chronic lymphocytic leukemia (CLL) cells. Leuk Res 2020; 96:106423. [PMID: 32712432 DOI: 10.1016/j.leukres.2020.106423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
Abstract
Lysosomes in chronic lymphocytic leukemia (CLL) cells have previously been identified as a promising target for therapeutic intervention in combination with targeted therapies. Recent studies have shown that antihistamines can induce lysosomal membrane permeabilization (LMP) in a variety of cell lines. Furthermore, our previous data indicates that lysosomotropic agents can cause synergistic cell death in vitro when combined with some tyrosine kinase inhibitors (TKI). In the current study, we have shown that three over-the-counter antihistamines, clemastine, desloratadine, and loratadine, preferentially induce cell death via LMP in CLL cells, as compared to normal lymphocytes. We treated primary CLL cells with antihistamines and found clemastine was the most effective at inducing LMP and cell death. More importantly, the antihistamines induced synergistic cytotoxicity when combined with the tyrosine kinase inhibitor, ibrutinib, but not with chemotherapy. Moreover, the synergy between clemastine and ibrutinib was associated with the induction of reactive oxygen species (ROS), loss of mitochondrial membrane potential and decreased Mcl-1 expression leading to apoptosis. This study proposes a potential novel treatment strategy for CLL, repurposing FDA-approved allergy medications in combination with the targeted therapy ibrutinib to enhance drug efficacy.
Collapse
Affiliation(s)
- Aaron Chanas-Larue
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gloria E Villalpando-Rodriguez
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elizabeth S Henson
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James B Johnston
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Spencer B Gibson
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
"Redox Imaging" to Distinguish Cells with Different Proliferative Indexes: Superoxide, Hydroperoxides, and Their Ratio as Potential Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6373685. [PMID: 31089411 PMCID: PMC6476105 DOI: 10.1155/2019/6373685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/12/2018] [Accepted: 01/09/2019] [Indexed: 01/11/2023]
Abstract
The present study was directed to the development of EPR methodology for distinguishing cells with different proliferative activities, using “redox imaging.” Three nitroxide radicals were used as redox sensors: (a) mito-TEMPO—cell-penetrating and localized mainly in the mitochondria; (b) methoxy-TEMPO—cell-penetrating and randomly distributed between the cytoplasm and the intracellular organelles; and (c) carboxy-PROXYL—nonpenetrating in living cells and evenly distributed in the extracellular environment. The experiments were conducted on eleven cell lines with different proliferative activities and oxidative capacities, confirmed by conventional analytical tests. The data suggest that cancer cells and noncancer cells are characterized by a completely different redox status. This can be analyzed by EPR spectroscopy using mito-TEMPO and methoxy-TEMPO, but not carboxy-PROXYL. The correlation analysis shows that the EPR signal intensity of mito-TEMPO in cell suspensions is closely related to the superoxide level. The described methodology allows the detection of overproduction of superoxide in living cells and their identification based on the intracellular redox status. The experimental data provide evidences about the role of superoxide and hydroperoxides in cell proliferation and malignancy.
Collapse
|
8
|
Low catalase expression confers redox hypersensitivity and identifies an indolent clinical behavior in CLL. Blood 2018; 131:1942-1954. [PMID: 29467184 DOI: 10.1182/blood-2017-08-800466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/17/2018] [Indexed: 11/20/2022] Open
Abstract
B-cell receptor (BCR) signaling is a key determinant of variable clinical behavior and a target for therapeutic interventions in chronic lymphocytic leukemia (CLL). Endogenously produced H2O2 is thought to fine-tune the BCR signaling by reversibly inhibiting phosphatases. However, little is known about how CLL cells sense and respond to such redox cues and what effect they have on CLL. We characterized the response of BCR signaling proteins to exogenous H2O2 in cells from patients with CLL, using phosphospecific flow cytometry. Exogenous H2O2 in the absence of BCR engagement induced a signaling response of BCR proteins that was higher in CLL with favorable prognostic parameters and an indolent clinical course. We identified low catalase expression as a possible mechanism accounting for redox signaling hypersensitivity. Decreased catalase could cause an escalated accumulation of exogenous H2O2 in leukemic cells with a consequent greater inhibition of phosphatases and an increase of redox signaling sensitivity. Moreover, lower levels of catalase were significantly associated with a slower progression of the disease. In leukemic cells characterized by redox hypersensitivity, we also documented an elevated accumulation of ROS and an increased mitochondrial amount. Taken together, our data identified redox sensitivity and metabolic profiles that are linked to differential clinical behavior in CLL. This study advances our understanding of the redox and signaling heterogeneity of CLL and provides the rationale for the development of therapies targeting redox pathways in CLL.
Collapse
|
9
|
Shi L, Ito F, Wang Y, Okazaki Y, Tanaka H, Mizuno M, Hori M, Hirayama T, Nagasawa H, Richardson DR, Toyokuni S. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med 2017; 108:904-917. [PMID: 28465262 DOI: 10.1016/j.freeradbiomed.2017.04.368] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Non-thermal plasma (NTP) is a potential new therapeutic modality for cancer. However, its mechanism of action remains unclear. Herein, we studied the effect of NTP on mesothelioma cells and fibroblasts to understand its anti-proliferative efficacy. Interestingly, NTP demonstrated greater selective anti-proliferative activity against mesothelioma cells relative to fibroblasts than cisplatin, which is used for mesothelioma treatment. The anti-proliferative effect of NTP was enhanced by pre-incubation with the cellular iron donor, ferric ammonium citrate (FAC), and inhibited by iron chelation using desferrioxamine (DFO). Three oxidative stress probes (CM-H2DCFDA, MitoSOX and C11-BODIPY) demonstrated reactive oxygen species (ROS) generation by NTP, which was inhibited by DFO. Moreover, NTP decreased transferrin receptor-1 and increased ferritin-H and -L chain expression that was correlated with decreased iron-regulatory protein expression and RNA-binding activity. This regulation was potentially due to increased intracellular iron in lysosomes, which was demonstrated via the Fe(II)-selective probe, HMRhoNox-M, and was consistent with autophagic-induction. Immunofluorescence using LysoTracker and Pepstatin A probes demonstrated increased cellular lysosome content, which was confirmed by elevated LAMP1 expression. The enhanced lysosomal biogenesis after NTP could be due to the observed increase in fluid-phase endocytosis and early endosome formation. These results suggest NTP acts as a stressor, which results in increased endocytosis, lysosome content and autophagy. In fact, NTP rapidly increased autophagosome formation, as judged by increased LC3B-II expression, which co-localized with LAMP1, indicating autophagolysosome formation. Autophagic-induction by NTP was confirmed using electron microscopy. In summary, NTP acts as a cellular stressor to rapidly induce fluid-phase endocytosis, lysosome biogenesis and autophagy.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Tasuku Hirayama
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Myelofibrosis (MF) is characterized by bone marrow fibrosis with subsequent extramedullary hematopoiesis and abnormal cytokine expression leading to splenomegaly, constitutional symptoms and cytopenias. The discovery of the JAK2 V617F mutation in the majority of MF patients has been followed by significant progress in drug development for MF. Areas covered: In this article, we review advances in the understanding of the underlying disease biology, prognostic assessment and therapeutic modalities for MF. We provide clinical trial evidence behind using the JAK2 inhibitor ruxolitinib, erythropoiesis stimulating agents, androgens, immunomodulatory drugs, interferon, cytoreductive drugs and hypomethylating agents in MF. Finally, we review novel therapeutic options for MF including the new JAK1/2 inhibitors, ruxolitinib based combination approaches as well as novel therapeutic agents. Expert commentary: Despite significant reduction of splenomegaly and improvement of symptom burden and a signal for survival improvement, ruxolitinib does not lead to major reductions in JAK2 V617F allele burden and bone marrow fibrosis. No ruxolitinib-based combination approach has so far demonstrated superiority over ruxolitinib monotherapy. The novel JAK2 inhibitors pacritinib and momelotinib, other JAK inhibitors, telomerase inhibitors, anti-fibrosis agents and hsp90 inhibitors are in different stages of development.
Collapse
Affiliation(s)
- Maximilian Stahl
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| | - Amer M Zeidan
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| |
Collapse
|