1
|
Wang X, Bi X, Huang X, Wang B, Guo Q, Wu Z. Systematic investigation of biomarker-like role of ARHGDIB in breast cancer. Cancer Biomark 2021; 28:101-110. [PMID: 32176626 DOI: 10.3233/cbm-190562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND ARHGDIB, a Rho GDP dissociation inhibitor protein, has been reported playing critical roles in regulation of multiple biological responses. However, whether ARHGDIB serves as a valuable biomarker in cancer is little known so far, especially in breast cancer. OBJECTIVE In this study, we aimed to investigate the importance of ARHGDIB in breast cancer, including but not limited to biomarker-like role, as well as potential mechanisms. METHODS Total 100 breast cancer samples and 100 benign breast disease samples were enrolled and underwent detailed pathological assessment and IHC analysis. Human breast cancer cell lines and epithelial cell line were subjected to siRNA-mediated knock-down, RT-qPCR, western blot, MTT staining, cell cycle assay, transwell analysis respectively. RESULTS We observed the expression of ARHGDIB is significantly higher in human breast cancer tissues compared with the benign tissues. ARHGDIB expression was positively correlated with tumor size, lymph node metastasis and TNM stage in breast cancer patients. Moreover, ARHGDIB depletion decreased proliferation, migration and invasion of breast cancer cells. Furthermore, we found ARHGDIB mediated epithelial-mesenchymal transition, and MMP2 is the key downstream effector of ARHGDIB. CONCLUSIONS Hence, our results suggested the significance and predictive role of ARHGDIB in breast cancer. High expression of ARHGDIB indicated the poor prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Bi
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bijun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Betjes MGH, Sablik KA, Litjens NHR, Otten HG, de Weerd AE. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum Immunol 2021; 82:89-96. [PMID: 33358038 DOI: 10.1016/j.humimm.2020.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/22/2022]
Abstract
The role of non-HLA autoantibodies in chronic-active antibody-mediated rejection (c-aABMR) of kidney transplants is largely unknown. In this study, the presence and clinical relevance of non-HLA autoantibodies using a recently developed multiplex Luminex-based assay were investigated. Patients with a kidney allograft biopsy at least 6 months after transplantation with a diagnosis of c-aABMR (n = 36) or no rejection (n = 21) were included. Pre-transplantation sera and sera at time of biopsy were tested for the presence of 14 relevant autoantibodies. A significantly higher signal for autoantibodies against Rho GDP-dissociation inhibitor 2 (ARHGDIB) was detected in recipients with c-aABMR as compared to recipients with no rejection. However, ARHGDIB autoantibodies did not associate with graft survival. Levels of autoantibodies against angiotensin II type 1-receptor (AT1R) and peroxisomal trans-2-enoyl-CoA reductase (PECR) were increased in recipients with interstitial fibrosis in their kidney biopsy. Only the signal for AT1R autoantibody showed a linear relationship with the degree of interstitial fibrosis and was associated with graft survival. In conclusion, anti-ARHGDIB autoantibodies are increased when c-aABMR is diagnosed but are not associated with graft survival, while higher levels of AT1R autoantibody are specifically associated with the presence of interstitial fibrosis and graft survival.
Collapse
Affiliation(s)
- Michiel G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Rotterdam, the Netherlands.
| | - Kasia A Sablik
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Rotterdam, the Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Rotterdam, the Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelies E de Weerd
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
van Balen P, Jedema I, van Loenen MM, de Boer R, van Egmond HM, Hagedoorn RS, Hoogstaten C, Veld SAJ, Hageman L, van Liempt PAG, Zwaginga JJ, Meij P, Veelken H, Falkenburg JHF, Heemskerk MHM. HA-1H T-Cell Receptor Gene Transfer to Redirect Virus-Specific T Cells for Treatment of Hematological Malignancies After Allogeneic Stem Cell Transplantation: A Phase 1 Clinical Study. Front Immunol 2020; 11:1804. [PMID: 32973756 PMCID: PMC7468382 DOI: 10.3389/fimmu.2020.01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Graft-vs.-leukemia (GVL) reactivity after HLA-matched allogeneic stem cell transplantation (alloSCT) is mainly mediated by donor T cells recognizing minor histocompatibility antigens (MiHA). If MiHA are targeted that are exclusively expressed on hematopoietic cells of recipient origin, selective GVL reactivity without severe graft-vs.-host-disease (GVHD) may occur. In this phase I study we explored HA-1H TCR gene transfer into T cells harvested from the HA-1H negative stem-cell donor to treat HA-1H positive HLA-A*02:01 positive patients with high-risk leukemia after alloSCT. HA-1H is a hematopoiesis-restricted MiHA presented in HLA-A*02:01. Since we previously demonstrated that donor-derived virus-specific T-cell infusions did not result in GVHD, we used donor-derived EBV and/or CMV-specific T-cells to be redirected by HA-1H TCR. EBV and/or CMV-specific T-cells were purified, retrovirally transduced with HA-1H TCR, and expanded. Validation experiments illustrated dual recognition of viral antigens and HA-1H by HA-1H TCR-engineered virus-specific T-cells. Release criteria included products containing more than 60% antigen-specific T-cells. Patients with high risk leukemia following T-cell depleted alloSCT in complete or partial remission were eligible. HA-1H TCR T-cells were infused 8 and 14 weeks after alloSCT without additional pre-conditioning chemotherapy. For 4/9 included patients no appropriate products could be made. Their donors were all CMV-negative, thereby restricting the production process to EBV-specific T-cells. For 5 patients a total of 10 products could be made meeting the release criteria containing 3–280 × 106 virus and/or HA-1H TCR T-cells. No infusion-related toxicity, delayed toxicity or GVHD occurred. One patient with relapsed AML at time of infusions died due to rapidly progressing disease. Four patients were in remission at time of infusion. Two patients died of infections during follow-up, not likely related to the infusion. Two patients are alive and well without GVHD. In 2 patients persistence of HA-1H TCR T-cells could be illustrated correlating with viral reactivation, but no overt in-vivo expansion of infused T-cells was observed. In conclusion, HA-1H TCR-redirected virus-specific T-cells could be made and safely infused in 5 patients with high-risk AML, but overall feasibility and efficacy was too low to warrant further clinical development using this strategy. New strategies will be explored using patient-derived donor T-cells isolated after transplantation transduced with HA-1H-specific TCR to be infused following immune conditioning.
Collapse
Affiliation(s)
- Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Renate de Boer
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - H M van Egmond
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Conny Hoogstaten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - P A G van Liempt
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap-Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline Meij
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - H Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
4
|
Antibodies Against ARHGDIB and ARHGDIB Gene Expression Associate With Kidney Allograft Outcome. Transplantation 2020; 104:1462-1471. [DOI: 10.1097/tp.0000000000003005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Mutis T, Xagara A, Spaapen RM. The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction. Front Immunol 2020; 11:1162. [PMID: 32670277 PMCID: PMC7326952 DOI: 10.3389/fimmu.2020.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
For hundreds of thousands of years, the human genome has extensively evolved, resulting in genetic variations in almost every gene. Immunological reflections of these genetic variations become clearly visible after an allogeneic stem cell transplantation (allo-SCT) as minor Histocompatibility (H) antigens. Minor H antigens are peptides cleaved from genetically encoded variable protein regions after which they are presented at the cell surface by HLA molecules. After allo-SCT with minor H antigen mismatches between donor and recipient, donor T cells recognize the minor H antigens of the recipient as foreign, evoking strong alloreactive immune responses. Studies in the late eighties have discovered that a subset of minor H antigens are encoded by hematopoietic system-specific genes. After allo-SCT, this subset is strictly expressed on the hematopoietic malignant cells and was therefore the first well-defined highly immunogenic group of tumor-specific antigens. In the last decade, neoantigens derived from genetic mutations in tumors have been identified as another group of immunogenic tumor-specific antigens. Therefore, hematopoietic minor H antigens and neoantigens are therapeutic equivalents. This review will connect our current knowledge about the immune biology and identification of minor H antigens and neoantigens leading to novel conclusions on their prediction.
Collapse
Affiliation(s)
- Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU Medical Center, Amsterdam, Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Kamburova EG, Gruijters ML, Kardol‐Hoefnagel T, Wisse BW, Joosten I, Allebes WA, van der Meer A, Hilbrands LB, Baas MC, Spierings E, Hack CE, van Reekum FE, van Zuilen AD, Verhaar MC, Bots ML, Drop ACAD, Plaisier L, Melchers RCA, Seelen MAJ, Sanders JS, Hepkema BG, Lambeck AJA, Bungener LB, Roozendaal C, Tilanus MGJ, Voorter CE, Wieten L, van Duijnhoven EM, Gelens MACJ, Christiaans MHL, van Ittersum FJ, Nurmohamed SA, Lardy NM, Swelsen W, van der Pant KAMI, van der Weerd NC, ten Berge IJM, Hoitsma A, van der Boog PJM, de Fijter JW, Betjes MGH, Heidt S, Roelen DL, Claas FH, Bemelman FJ, Otten HG. Antibodies against ARHGDIB are associated with long-term kidney graft loss. Am J Transplant 2019; 19:3335-3344. [PMID: 31194283 PMCID: PMC6899679 DOI: 10.1111/ajt.15493] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/03/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023]
Abstract
The clinical significance of non-HLA antibodies on renal allograft survival is a matter of debate, due to differences in reported results and lack of large-scale studies incorporating analysis of multiple non-HLA antibodies simultaneously. We developed a multiplex non-HLA antibody assay against 14 proteins highly expressed in the kidney. In this study, the presence of pretransplant non-HLA antibodies was correlated to renal allograft survival in a nationwide cohort of 4770 recipients transplanted between 1995 and 2006. Autoantibodies against Rho GDP-dissociation inhibitor 2 (ARHGDIB) were significantly associated with graft loss in recipients transplanted with a deceased-donor kidney (N = 3276) but not in recipients of a living-donor kidney (N = 1496). At 10 years after deceased-donor transplantation, recipients with anti-ARHGDIB antibodies (94/3276 = 2.9%) had a 13% lower death-censored covariate-adjusted graft survival compared to the anti-ARHGDIB-negative (3182/3276 = 97.1%) population (hazard ratio 1.82; 95% confidence interval, 1.32-2.53; P = .0003). These antibodies occur independently from donor-specific anti-HLA antibodies (DSA) or other non-HLA antibodies investigated. No significant relations with graft loss were found for the other 13 non-HLA antibodies. We suggest that pretransplant risk assessment can be improved by measuring anti-ARHGDIB antibodies in all patients awaiting deceased-donor transplantation.
Collapse
|
8
|
van Balen P, van Bergen CAM, van Luxemburg-Heijs SAP, de Klerk W, van Egmond EHM, Veld SAJ, Halkes CJM, Zwaginga JJ, Griffioen M, Jedema I, Falkenburg JHF. CD4 Donor Lymphocyte Infusion Can Cause Conversion of Chimerism Without GVHD by Inducing Immune Responses Targeting Minor Histocompatibility Antigens in HLA Class II. Front Immunol 2018; 9:3016. [PMID: 30619360 PMCID: PMC6305328 DOI: 10.3389/fimmu.2018.03016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Under non-inflammatory conditions HLA class II is predominantly expressed on hematopoietic cells. Therefore, donor CD4 T-cells after allogeneic stem cell transplantation (alloSCT) may mediate graft-vs.-leukemia reactivity without graft-vs.-host disease (GVHD). We analyzed immune responses in four patients converting from mixed to full donor chimerism without developing GVHD upon purified CD4 donor lymphocyte infusion (DLI) from their HLA-identical sibling donor after T-cell depleted alloSCT. In vivo activated T-cells were clonally isolated after CD4 DLI. Of the alloreactive T-cell clones, 96% were CD4 positive, illustrating the dominant role of CD4 T-cells in the immune responses. We identified 9 minor histocompatibility antigens (MiHA) as targets for alloreactivity, of which 8 were novel HLA class II restricted MiHA. In all patients, MiHA specific CD4 T-cells were found that were capable to lyse hematopoietic cells and to recognize normal and malignant cells. No GVHD was induced in these patients. Skin fibroblasts forced to express HLA class II, were recognized by only two MiHA specific CD4 T-cell clones. Of the 7 clones that failed to recognize fibroblasts, two targeted MiHA were encoded by genes not expressed in fibroblasts, presentation of one MiHA was dependent on HLA-DO, which is absent in fibroblasts, and T-cells recognizing the remaining 4 MiHA had an avidity that was apparently too low to recognize fibroblasts, despite clear recognition of hematopoietic cells. In conclusion, purified CD4 DLI from HLA-identical sibling donors can induce conversion from mixed to full donor chimerism with graft-vs.-malignancy reactivity, but without GVHD, by targeting HLA class II restricted MiHA.
Collapse
Affiliation(s)
- Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Wendy de Klerk
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jaap-Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
9
|
Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, de Boer HC, Jager MJ, Schmelzer E, Vries RG, Al Hinai AS, Kroes WG, Monajemi R, Goeman JJ, Böhringer S, Marijt WAF, Falkenburg JHF, Griffioen M. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies. PLoS One 2016; 11:e0155165. [PMID: 27171398 PMCID: PMC4865094 DOI: 10.1371/journal.pone.0155165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Collapse
Affiliation(s)
- M. J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - A. N. Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - C. van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C. Out
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. C. de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M. J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - E. Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - R. G. Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A. S. Al Hinai
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W. G. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - R. Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - W. A. F. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
10
|
Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol 2016; 7:100. [PMID: 27014279 PMCID: PMC4791598 DOI: 10.3389/fimmu.2016.00100] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) effect is often accompanied with undesired side effects against healthy tissues known as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are both mediated by donor-derived T-cells recognizing polymorphic peptides presented by HLA surface molecules on patient cells. These polymorphic peptides or minor histocompatibility antigens (MiHA) are produced by genetic differences between patient and donor. Since polymorphic peptides may be useful targets to manipulate the balance between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In this review, the diversity of autosomal MiHA characterized thus far as well as the various molecular mechanisms by which genetic variants create immune targets and the role of cryptic transcripts and proteins as antigen sources are described. The tissue distribution of MiHA as important factor in GvL and GvHD is considered as well as possibilities how hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. Although more MiHA are still needed for comprehensive understanding of the biology of GvL and GvHD and manipulation by immunotherapy, this review shows insight into the composition and kinetics of in vivo immune responses with respect to specificity, diversity, and frequency of specific T-cells and surface expression of HLA-peptide complexes and other (accessory) molecules on the target cell. A complex interplay between these factors and their environment ultimately determines the spectrum of clinical manifestations caused by immune responses after alloSCT.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, Leiden University Medical Center , Leiden , Netherlands
| | | | | |
Collapse
|
11
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|