1
|
Isobe T, Kucinski I, Barile M, Wang X, Hannah R, Bastos HP, Chabra S, Vijayabaskar MS, Sturgess KHM, Williams MJ, Giotopoulos G, Marando L, Li J, Rak J, Gozdecka M, Prins D, Shepherd MS, Watcham S, Green AR, Kent DG, Vassiliou GS, Huntly BJP, Wilson NK, Göttgens B. Preleukemic single-cell landscapes reveal mutation-specific mechanisms and gene programs predictive of AML patient outcomes. CELL GENOMICS 2023; 3:100426. [PMID: 38116120 PMCID: PMC10726426 DOI: 10.1016/j.xgen.2023.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023]
Abstract
Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.
Collapse
Affiliation(s)
- Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Melania Barile
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Rebecca Hannah
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Hugo P Bastos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Shirom Chabra
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - M S Vijayabaskar
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Katherine H M Sturgess
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Matthew J Williams
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Malgorzata Gozdecka
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Daniel Prins
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Mairi S Shepherd
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Sam Watcham
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. Blood 2021; 136:2442-2456. [PMID: 32589720 DOI: 10.1182/blood.2020005037] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
Collapse
|
3
|
Recent Studies on Ponatinib in Cancers Other Than Chronic Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10110430. [PMID: 30423915 PMCID: PMC6267038 DOI: 10.3390/cancers10110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023] Open
Abstract
Ponatinib is a third line drug for the treatment of chronic myeloid leukemia patients, especially those that develop the gatekeeper mutation T315I, which is resistant to the first and the second line drugs imatinib, nilotinib, dasatinib and bosutinib. The compound was first identified as a pan Bcr-Abl and Src kinase inhibitor. Further studies have indicated that it is a multitargeted inhibitor that is active on FGFRs, RET, AKT, ERK1/2, KIT, MEKK2 and other kinases. For this reason, the compound has been evaluated on several cancers in which these kinases play important roles, including thyroid, breast, ovary and lung cancer, neuroblastoma, rhabdoid tumours and in myeloproliferative disorders. Ponatinib is also being tested in clinical trials to evaluate its activity in FLT3-ITD acute myelogenous leukemia, head and neck cancers, certain type of lung cancer, gastrointestinal stromal tumours and other malignancies. In this review we report the most recent preclinical and clinical studies on ponatinib in cancers other than CML, with the aim of giving a complete overview of this interesting compound.
Collapse
|
4
|
Taylor SJ, Duyvestyn JM, Dagger SA, Dishington EJ, Rinaldi CA, Dovey OM, Vassiliou GS, Grove CS, Langdon WY. Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci Transl Med 2018; 9:9/402/eaam8060. [PMID: 28794285 DOI: 10.1126/scitranslmed.aam8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
We describe an approach to inhibit chemotherapy-induced myelosuppression. We found that short-term exposure of mice to the FLT3 inhibitor quizartinib induced the transient quiescence of multipotent progenitors (MPPs). This property of quizartinib conferred marked protection to MPPs in mice receiving fluorouracil or gemcitabine. The protection resulted in the rapid recovery of bone marrow and blood cellularity, thus preventing otherwise lethal myelosuppression. A treatment strategy involving quizartinib priming that protected wild-type bone marrow progenitors, but not leukemic cells, from fluorouracil provided a more effective treatment than conventional induction therapy in mouse models of acute myeloid leukemia. This strategy has the potential to be extended for use in other cancers where FLT3 inhibition does not adversely affect the effectiveness of chemotherapy. Thus, the addition of quizartinib to cancer treatment regimens could markedly improve cancer patient survival and quality of life.
Collapse
Affiliation(s)
- Samuel J Taylor
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Johanna M Duyvestyn
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Samantha A Dagger
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Emma J Dishington
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Catherine A Rinaldi
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver M Dovey
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carolyn S Grove
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.,PathWest Department of Haematology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia.,Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
5
|
Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, Andrews RM, Pacharne S, Tzelepis K, Vijayabaskar MS, Green P, Rad R, Arends M, Wright P, Yusa K, Bradley A, Varela I, Vassiliou GS. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 2017; 130:1911-1922. [PMID: 28835438 PMCID: PMC5672315 DOI: 10.1182/blood-2017-01-760595] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.
Collapse
Affiliation(s)
- Oliver M Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Annalisa Mupo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Carolyn S Grove
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
- PathWest Division of Clinical Pathology, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Claire Lynn
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Nathalie Conte
- Sample Phenotype Ontology Team, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Robert M Andrews
- Institute of Translation, Innovation, Methodology, and Engagement, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Suruchi Pacharne
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Paul Green
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mark Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Wright
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| |
Collapse
|