1
|
Alimbetov D, Umbayev B, Tsoy A, Begimbetova D, Davis T, Kipling D, Askarova S. Small molecule targeting of the p38/Mk2 stress signaling pathways to improve cancer treatment. BMC Cancer 2023; 23:895. [PMID: 37740222 PMCID: PMC10517462 DOI: 10.1186/s12885-023-11319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Although a long-term goal of cancer therapy always has been the development of agents that selectively destroy cancer cells, more recent trends have been to seek secondary agents that sensitize cancer cells to existing treatment regimens. In this regard, the present study explored the possibility of using small molecule inhibitors of p38MAPK/MK2 stress signaling pathways as potential agents to enhance the sensitivity of cancer cells with abrogated G1 checkpoint to the DNA damaging agent etoposide by specifically targeting the DNA damage-induced G2 cell cycle checkpoint. METHODS We have applied CCK8 and FACS-based viability assays and cell cycle analysis to investigate the effect of small molecules SB203580 and MK2.III on the sensitivity of small cell lung cancer cells (SCLC) that lack the G1 checkpoint to the DNA damaging agent Etoposide when used in combination. We have also assessed the effectiveness of combination chemotherapy on tumor xenograft suppression with etoposide and MK2.III in immunosuppressed mice. In addition, additional CCK8 cell viability analysis of the MDA-MB-231 breast cancer cell line, and SW620, and SW480 colorectal cancer cell lines was performed. RESULTS Results suggest that etoposide produces a profound effect on the cell cycle profile of cells in a manner that is consistent with the degree of cell viability that is seen using the viable cell assay. Results of the co-treatment experiments revealed that the p38/MK2 kinase inhibitors SB203580 and MK2.III both enhanced the DNA-damaging effects of etoposide on NCI-H69 cell viability in vitro. Results revealed that in vivo MK2.III was able to act as a chemosensitizer when used in combination with etoposide making NCI-H69 lung cancer cells sensitive to chemotherapeutic drug by 45% compared to single usage of the drug. We also report that MK2.III sensitizes metastatic cell lines SW-620 and MDA-MB-231 to etoposide but does not increase the sensitivity of non-metastasizing SW-480 colorectal cells to DNA damaging agent in vitro. CONCLUSION Findings reported in this study provide evidence that specific inhibitors of MK2 may indeed improve overall cancer therapy; however, their effectiveness depends on cell types.
Collapse
Affiliation(s)
- D Alimbetov
- Creehey Children's Cancer Research Institute, UT Health at San Antonio, San Antonio, USA.
| | - B Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - A Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - D Begimbetova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - T Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - D Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sh Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
2
|
Gu C, Wang Y, Zhang L, Qiao L, Sun S, Shao M, Tang X, Ding P, Tang C, Cao Y, Zhou Y, Guo M, Wei R, Li N, Xiao Y, Duan J, Yang Y. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:11. [PMID: 34991674 PMCID: PMC8734095 DOI: 10.1186/s13046-021-02220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Currently, multiple myeloma (MM) is still an incurable plasma cell malignancy in urgent need of novel therapeutic targets and drugs. METHODS Bufalin was known as a highly toxic but effective anti-cancer compound. We used Bufalin as a probe to screen its potential targets by proteome microarray, in which AHSA1 was the unique target of Bufalin. The effects of AHSA1 on cellular proliferation and drug resistance were determined by MTT, western blot, flow cytometry, immunohistochemistry staining and xenograft model in vivo. The potential mechanisms of Bufalin and KU-177 in AHSA1/HSP90 were verified by co-immunoprecipitation, mass spectrometry, site mutation and microscale thermophoresis assay. RESULTS AHSA1 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. Furthermore, AHSA1 promoted MM cell proliferation and proteasome inhibitor (PI) resistance in vitro and in vivo. Mechanism exploration indicated that AHSA1 acted as a co-chaperone of HSP90A to activate CDK6 and PSMD2, which were key regulators of MM proliferation and PI resistance respectively. Additionally, we identified AHSA1-K137 as the specific binding site of Bufalin on AHSA1, mutation of which decreased the interaction of AHSA1 with HSP90A and suppressed the function of AHSA1 on mediating CDK6 and PSMD2. Intriguingly, we discovered KU-177, an AHSA1 selective inhibitor, and found KU-177 targeting the same site as Bufalin. Bufalin and KU-177 treatments hampered the proliferation of flow MRD-positive cells in both primary MM and recurrent MM patient samples. Moreover, KU-177 abrogated the cellular proliferation and PI resistance induced by elevated AHSA1, and decreased the expression of CDK6 and PSMD2. CONCLUSIONS We demonstrate that AHSA1 may serve as a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.
Collapse
Affiliation(s)
- Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lulin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Qiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Miaomiao Shao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pinggang Ding
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuhao Cao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongfang Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Gu C, Wang W, Tang X, Xu T, Zhang Y, Guo M, Wei R, Wang Y, Jurczyszyn A, Janz S, Beksac M, Zhan F, Seckinger A, Hose D, Pan J, Yang Y. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer 2021; 20:84. [PMID: 34090465 PMCID: PMC8178856 DOI: 10.1186/s12943-021-01380-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still incurable and characterized by clonal expansion of plasma cells in the bone marrow (BM). Therefore, effective therapeutic interventions must target both myeloma cells and the BM niche. METHODS Cell proliferation, drug resistance, and chromosomal instability (CIN) induced by CHEK1 were confirmed by Giemsa staining, exon sequencing, immunofluorescence and xenograft model in vivo. Bone lesion was evaluated by Tartrate-resistant acid phosphatase (TRAP) staining. The existence of circCHEK1_246aa was evaluated by qPCR, Sanger sequencing and Mass Spectrometer. RESULTS We demonstrated that CHEK1 expression was significantly increased in human MM samples relative to normal plasma cells, and that in MM patients, high CHEK1 expression was associated with poor outcomes. Increased CHEK1 expression induced MM cellular proliferation and evoked drug-resistance in vitro and in vivo. CHEK1-mediated increases in cell proliferation and drug resistance were due in part to CHEK1-induced CIN. CHEK1 activated CIN, partly by phosphorylating CEP170. Interestingly, CHEK1 promoted osteoclast differentiation by upregulating NFATc1 expression. Intriguingly, we discovered that MM cells expressed circCHEK1_246aa, a circular CHEK1 RNA, which encoded and was translated to the CHEK1 kinase catalytic center. Transfection of circCHEK1_246aa increased MM CIN and osteoclast differentiation similarly to CHEK1 overexpression, suggesting that MM cells could secrete circCHEK1_246aa in the BM niche to increase the invasive potential of MM cells and promote osteoclast differentiation. CONCLUSIONS Our findings suggest that targeting the enzymatic catalytic center encoded by CHEK1 mRNA and circCHEK1_246aa is a promising therapeutic modality to target both MM cells and BM niche.
Collapse
Affiliation(s)
- Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Tingting Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yanxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Mengjie Guo
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rongfang Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yajun Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, USA
| | - Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Anja Seckinger
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Dirk Hose
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Jingxuan Pan
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Alberge JB, Magrangeas F, Wagner M, Denié S, Guérin-Charbonnel C, Campion L, Attal M, Avet-Loiseau H, Carell T, Moreau P, Minvielle S, Sérandour AA. DNA hydroxymethylation is associated with disease severity and persists at enhancers of oncogenic regions in multiple myeloma. Clin Epigenetics 2020; 12:163. [PMID: 33138842 PMCID: PMC7607866 DOI: 10.1186/s13148-020-00953-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Background Multiple myeloma (MM) is a heterogeneous plasma cell malignancy that remains challenging to cure. Global hypomethylation correlates with an aggressive phenotype of the disease, while hypermethylation is observed at particular regions of myeloma such as B cell-specific enhancers. The recently discovered active epigenetic mark 5-hydroxymethylCytosine (5hmC) may also play a role in tumor biology; however, little is known about its level and distribution in myeloma. In this study, we investigated the global level and the genomic localization of 5hmC in myeloma cells from 40 newly diagnosed patients, including paired relapses, and of control individuals.
Results Compared to normal plasma cells, we found global 5hmC levels to be lower in myeloma (P < 0.001). Higher levels of 5hmC were found in lower grades of the International Staging System prognostic index (P < 0.05) and tend to associate with a longer overall survival (P < 0.1). From the hydroxymethylome data, we observed that the remaining 5hmC is organized in large domains overlapping with active chromatin marks and chromatin opening. We discovered that 5hmC strongly persists at key oncogenic genes such as CCND1, CCND2 and MMSET and characterized domains that are specifically hydroxymethylated in myeloma subgroups. Novel 5hmC-enriched domains were found at putative enhancers of CCND2 and MYC in newly diagnosed patients. Conclusions 5hmC level is associated with clinical aspects of MM. Mapping 5hmC at a genome-wide level provides insights into the disease biology directly from genomic DNA, which makes it a potent mark to study epigenetics on large patient cohorts.
Collapse
Affiliation(s)
- Jean-Baptiste Alberge
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France
| | - Florence Magrangeas
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Hematology Department, University Hospital, Nantes, France
| | - Mirko Wagner
- Ludwig Maximilian Universität München, Munich, Germany
| | - Soline Denié
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Catherine Guérin-Charbonnel
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Institut de cancérologie de L'Ouest Site René-Gauducheau, Saint-Herblain, France
| | - Loïc Campion
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Institut de cancérologie de L'Ouest Site René-Gauducheau, Saint-Herblain, France
| | - Michel Attal
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche Médicale U1037, Toulouse, France.,Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche Médicale U1037, Toulouse, France.,Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, Toulouse, France
| | - Thomas Carell
- Ludwig Maximilian Universität München, Munich, Germany
| | - Philippe Moreau
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Hematology Department, University Hospital, Nantes, France
| | - Stéphane Minvielle
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France. .,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France. .,Hematology Department, University Hospital, Nantes, France.
| | - Aurélien A Sérandour
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France. .,École Centrale de Nantes, Nantes, France.
| |
Collapse
|
5
|
Guo M, Sun D, Fan Z, Yuan Y, Shao M, Hou J, Zhu Y, Wei R, Zhu Y, Qian J, Li F, Yang Y, Gu C. Targeting MK2 Is a Novel Approach to Interfere in Multiple Myeloma. Front Oncol 2019; 9:722. [PMID: 31440466 PMCID: PMC6694709 DOI: 10.3389/fonc.2019.00722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
MAPKAPK2 (MK2), the direct substrate of p38 MAPK, has been well-acknowledged as an attractive drug target for cancer therapy. However, few studies have assessed the functions of it in multiple myeloma (MM). In the present study, MK2 expression of MM patients was analyzed by gene expression profiling (GEP) and array-based comparative genomic hybridization (aCGH). Several experiments in vitro including MTT assay, Western blot and flow cytometry analysis were performed to identify the function of MK2 in MM. In addition, we conducted mouse survival experiments to explain the effects of MK2 on MM in vivo. mRNA level of MK2 and chromosomal gain of MK2 locus in MM cells significantly increased compared to normal samples. Furthermore, MM patients with high expression of MK2 were associated with a poor outcome. Follow-up studies showed that MK2 exerted a remarkably positive effect on MM cell proliferation and drug-resistance. Further exploration focusing on MK2 inhibitor IV revealed its inhibitory action on MM growth and drug-resistance, as well as improving survival in mouse models. In addition, a combination of MK2 inhibitor IV and the key MM therapeutic agents including bortezomib, doxorubicin, or dexamethasone facilitated curative effects on inhibiting MM cell proliferation. Taken together, our study reveals the clinical relevance of MK2 inhibition in MM and demonstrates that targeting MK2 may afford a new therapeutic approach to MM.
Collapse
Affiliation(s)
- Mengjie Guo
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongdong Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxia Yuan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Shao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhao Hou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongfang Wei
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological Targeting of Cell Cycle, Apoptotic and Cell Adhesion Signaling Pathways Implicated in Chemoresistance of Cancer Cells. Int J Mol Sci 2018; 19:ijms19061690. [PMID: 29882812 PMCID: PMC6032165 DOI: 10.3390/ijms19061690] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dauren Alimbetov
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Terence Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - David Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|