1
|
Yoshifuji K, Sadato D, Toya T, Motomura Y, Hirama C, Takase H, Yamamoto K, Harada Y, Mori T, Nagao T. Impact of genetic alterations on central nervous system progression of primary vitreoretinal lymphoma. Haematologica 2024; 109:3641-3649. [PMID: 38841798 PMCID: PMC11532695 DOI: 10.3324/haematol.2023.284953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) is a rare malignant lymphoma subtype with an unfavorable prognosis due to frequent central nervous system (CNS) progression. Thus, identifying factors associated with CNS progression is essential for improving the prognosis of PVRL patients. Accordingly, we conducted a comprehensive genetic analysis using archived vitreous humor samples of 36 PVRL patients diagnosed and treated at our institution and retrospectively examined the relationship between genetic alterations and CNS progression. Whole-exome sequencing (N=2) and amplicon sequencing using a custom panel of 107 lymphomagenesis-related genes (N=34) were performed to assess mutations and copy number alterations. The median number of pathogenic genetic alterations per case was 12 (range, 0-22). Pathogenic genetic alterations of CDKN2A, MYD88, CDKN2B, PRDM1, PIM1, ETV6, CD79B, and IGLL5, as well as aberrant somatic hypermutations, were frequently detected. The frequency of ETV6 loss and PRDM1 alteration (mutation and loss) was 23% and 49%, respectively. Multivariate analysis revealed ETV6 loss (hazard ratio [HR]=3.26, 95% confidence interval [CI]: 1.08-9.85) and PRDM1 alteration (HR=2.52, 95% CI: 1.03-6.16) as candidate risk factors associated with CNS progression of PVRL. Moreover, these two genetic factors defined slow-, intermediate-, and rapid-progression groups (0, 1, and 2 factors, respectively), and the median period to CNS progression differed significantly among them (52 vs. 33 vs. 20 months, respectively). Our findings suggest that genetic factors predict the CNS progression of PVRL effectively, and the genetics-based CNS progression model might lead to stratification of treatment.
Collapse
Affiliation(s)
- Kota Yoshifuji
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo.
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Komagome Hospital, Tokyo
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Komagome Hospital, Tokyo
| | - Yotaro Motomura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo
| | - Chizuko Hirama
- Clinical Research Support Center, Tokyo Metropolitan Komagome Hospital, Tokyo
| | - Hiroshi Takase
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo
| | - Kouhei Yamamoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo
| | - Yuka Harada
- Clinical Laboratory, Tokyo Metropolitan Komagome Hospital, Tokyo
| | - Takehiko Mori
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo
| |
Collapse
|
2
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Chen K, Qin H, Li X, Zhou X, Ma J, Guan M. Diagnostic potential of vitreoretinal lymphoma by detection of gene mutations with NGS in 25 Chinese patients. Clin Chim Acta 2024; 561:119827. [PMID: 38909978 DOI: 10.1016/j.cca.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Vitreoretinal lymphoma (VRL) is a rare malignant lymphoproliferative tumor. Our study aimed to investigate the mutational profile of VRL distinguishing from uveitis using next-generation sequencing (NGS) analysis on small amounts of vitreous fluid. METHODS Vitreous samples from twenty-six eyes of twenty VRL patients and six eyes of five uveitis patients were enrolled. All vitreous samples underwent cytology, immunocytochemistry for B-cell markers, cytokines analysis of IL-10 and IL-6, and flow cytometry. NGS was performed in vitreous specimens from the 25 patients using 82 DLBCL-targeted mutation panels. Vitreous fluids from 8 cases were performed paired NGS-based mutation analysis on both cell-free DNA (cfDNA) and genomic DNA. RESULTS The sensitivity and accuracy rates for vitreous cytology were 70 % and 76 %, and for cytokine analysis (IL-10/IL-6 > 1) were 65 % and 72 %, respectively. Overall, the common mutations in VRL were PIM1 (88.5 %), IGLL5 (88.5 %), KMT2C (73 %), MYD88 (77 %), CD79B (50 %) and TBL1XR1 (46.2 %). In addition, the genetic mutation in cfDNA was consistent with that in genomic DNA in eight VRL cases. CONCLUSIONS The mutation analysis of 82 DLBCL-targeted spectrum mutation panels by NGS on the vitreous samples is a sensitive and specific tool for distinguishing VRL from uveitis. Utilizing cfDNA for NGS analysis may serve as a liquid biopsy to aid in the diagnosis of VRL, particularly when using small-volume aspirate.
Collapse
Affiliation(s)
- Kun Chen
- Department of Laboratory Medcine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huanhuan Qin
- Department of Laboratory Medcine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyu Li
- Department of Laboratory Medcine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xian Zhou
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjing Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medcine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Menean M, Giuffrè C, Cicinelli MV, Marchese A, Modorati G, Bandello F, Miserocchi E. A comprehensive overview of diagnosis, imaging and treatment of vitreoretinal lymphoma. Eur J Ophthalmol 2024; 34:931-940. [PMID: 37956540 PMCID: PMC11295402 DOI: 10.1177/11206721231211931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Vitreoretinal lymphoma (VRL) is a rare B-cell intraocular neoplasia characterized by poor long-term prognosis and lack of effective therapies. It mainly involves the vitreous humor, the retina, and the retinal pigment epithelium (RPE), although anterior segment involvement can occur. VRL is classified as a lymphoma of immune privileged sites, along with testis lymphoma and primary central nervous system lymphoma (PCNSL). VRL and PCNSL are strictly connected indeed: 80% of VRL develop PCNSL, while 20% of patients with PCNSL present VRL during natural history of lymphoma. Due to the lack of worldwide consensus about diagnosis, therapy, and follow-up timing, VRL represents one of the most challenging ocular affections.VRL commonly masquerades as a posterior uveitis, and misdiagnosis often occurs because of partial response to topical steroids. Gold standard for diagnosis is cytological analysis of vitreous humor. However, this technique lacks sensitivity and supplemental molecular analyses can improve the diagnostic process. Multimodal imaging allows ophthalmologists to empower their clinical suspicion and a comprehensive examination can highlight typical features of VRL and justify further invasive procedures.There is no consensus about VRL therapy, and none of the therapeutical scheme has demonstrated to prevent cerebral involvement and improve patient's overall survival. Intravitreal injections of chemotherapeutics drugs, ocular radiation therapy and systemic chemotherapy can be considered in the treatment of VRL. Once cerebral involvement occurs, systemic chemotherapy must be included in the treatment as a life-saving therapy. Further multicentric studies are required to find out the best treatment of patients with VRL.
Collapse
Affiliation(s)
- Matteo Menean
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Giuffrè
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Cicinelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Marchese
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Modorati
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Miserocchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Bonzheim I, Salmerón-Villalobos J, Süsskind D, Szurman P, Gekeler F, Spitzer MS, Salaverria I, Campo E, Coupland SE, Quintanilla-Martinez L, Fend F. [Molecular diagnostics for vitreoretinal lymphoma]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:150-154. [PMID: 37947807 DOI: 10.1007/s00292-023-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Primary vitreoretinal lymphoma (PVRL) represents a subtype of intraocular lymphomas, which are a subgroup of malignant lymphomas of the eye. PVRL is considered a special form of primary diffuse large cell lymphoma (DLBCL) of the CNS (central nervous system) (PCNSL) and arises primary or secondary to PCNSL. According to the cell of origin (COO) classification of DLBCL, PVRL largely belongs to the activated B‑cell (ABC) type of DLBCL. Based on a recently established genetic-biological classification of DLBCL, PCNSL and thus also PVRL belong to a group of DLBCL of the MYD88/CD79B-mutated (MCD) or cluster 5 subtype, which often shows extranodal manifestations and MYD88 and CD79A mutations as well as CDKN2A deletions.PVRL diagnostics is often complicated as it represents a classic masquerade syndrome. Due to the usually limited material with often large numbers of reactive lymphocytes and/or degenerative changes in the cells, the results of diagnostic tests are difficult to interpret. Classic diagnostic tests include cytology on vitreous aspirates, immunocytochemistry, and clonality analysis.New insights into the spectrum of genetic alterations of vitreoretinal lymphomas (VRL) confirm the close relationship to PCNSL and could significantly improve pathological diagnosis. Next-generation sequencing panel-based diagnostics allow VRL diagnosis confirmation with little DNA in almost 100% of patients in cases with insufficient cytological evidence or lack of clonality detection. PVRL, as well as secondary vitreoretinal lymphomas after PCNSL or extracerebral DLBCL, have high mutation frequencies in characteristically mutated genes in PCNSL or MCD/cluster 5 type DLBCL. Supporting diagnostics, mutation detection can also be performed on cell-free DNA from the vitreous supernatant.
Collapse
Affiliation(s)
- Irina Bonzheim
- Institut für Pathologie und Neuropathologie, Abt. Allgemeine und Molekulare Pathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland.
| | - Julia Salmerón-Villalobos
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spanien
| | - Daniela Süsskind
- Department für Augenheilkunde, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | | | - Florian Gekeler
- Department für Augenheilkunde, Universitätsklinikum Tübingen, Tübingen, Deutschland
- Augenklinik, Klinikum Stuttgart, Stuttgart, Deutschland
| | - Martin S Spitzer
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Deutschland
| | - Itziar Salaverria
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spanien
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spanien
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Großbritannien
| | - Leticia Quintanilla-Martinez
- Institut für Pathologie und Neuropathologie, Abt. Allgemeine und Molekulare Pathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland
| | - Falko Fend
- Institut für Pathologie und Neuropathologie, Abt. Allgemeine und Molekulare Pathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland
| |
Collapse
|
6
|
Kwak JJ, Lee KS, Lee J, Kim YJ, Choi EY, Byeon SH, Chang WS, Kim YR, Kim JS, Shin S, Lee ST, Kim SS, Lee CS. Next-Generation Sequencing of Vitreoretinal Lymphoma by Vitreous Liquid Biopsy: Diagnostic Potential and Genotype/Phenotype Correlation. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37975847 PMCID: PMC10664732 DOI: 10.1167/iovs.64.14.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To determine the diagnostic potential of next-generation sequencing (NGS) in vitreous samples, analyze genotype-phenotype characteristics, and compare NGS of matched vitreous and brain samples in patients with associated central nervous system lymphoma (CNSL). Methods A total of 32 patients suspected of vitreoretinal lymphoma (VRL) who underwent diagnostic vitrectomy and NGS were included in this retrospective observational case-series. Fresh vitreous specimens from diagnostic vitrectomy of VRL-suspected patients underwent NGS using a custom panel targeting 747 candidate genes for lymphoma. They also underwent malignancy cytology, interleukin (IL)-10/IL-6, immunoglobulin heavy chain (IGH)/immunoglobulin kappa light chain (IGK) monoclonality testing. MYD88 L265P mutation was examined from anterior chamber tap samples. The diagnosis of VRL was made based on typical clinical characteristics for VRL, as well as malignant cytology, IGH/IGK clonality, or IL-10/IL-6 > 1. Sensitivity and specificity of NGS were compared with conventional diagnostic tests. Brain tissues suspected of lymphoma were collected by stereotactic biopsy and underwent NGS. Genetic variations detected in NGS of vitreous and brain tissue specimens were compared. Results The sensitivity values for cytology, IL-10/IL-6 > 1, clonality assays for IGH and IGK, MYD88 L265P detection in anterior chamber tap samples, and vitreous NGS were 0.23, 0.83, 0.68, 0.79, 0.67, and 0.85, with specificity values of 1.00, 0.83, 0.50, 0.25, 0.83, and 0.83, respectively. The sensitivity (0.85) of vitreous NGS was the highest compared to other conventional diagnostic tests for VRL. The most common mutations were MYD88 (91%), CDKN2A (36%), PIM1 (32%), IGLL5 (27%), and ETV6 (23%). Although several gene alterations demonstrated heterogeneity between the brain and eyes, some common mutational profiles were observed in matched vitreous and brain samples. Conclusions Overall, NGS of the vitreous demonstrated high sensitivity among conventional diagnostic tests. VRL and CNSL appeared to have both shared and distinct genetic variations, which may suggest site-specific variations from a common origin.
Collapse
Affiliation(s)
- Jay Jiyong Kwak
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Seob Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Junwon Lee
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Joon Kim
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Choi
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Kim
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Milman T, Grossniklaus HE, Goldman-Levy G, Kivelä TT, Coupland SE, White VA, Mudhar HS, Eberhart CG, Verdijk RM, Heegaard S, Gill AJ, Jager MJ, Rodríguez-Reyes AA, Esmaeli B, Hodge JC, Cree IA. The 5th Edition of the World Health Organization Classification of Tumours of the Eye and Orbit. Ocul Oncol Pathol 2023; 9:71-95. [PMID: 37900189 PMCID: PMC10601864 DOI: 10.1159/000530730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Tatyana Milman
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Hans E. Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabrielle Goldman-Levy
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tero T. Kivelä
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sarah E. Coupland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Valerie A. White
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles G. Eberhart
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Verdijk
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Heegaard
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J. Gill
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abelardo A. Rodríguez-Reyes
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
| | | | - Ian A. Cree
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - on behalf of the WHO Classification of Tumours Editorial Board
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Li M, Mi L, Wang C, Wang X, Zhu J, Qi F, Yu H, Ye Y, Wang D, Cao J, Hu D, Yang Q, Zhao D, Ma T, Song Y, Zhu J. Clinical implications of circulating tumor DNA in predicting the outcome of diffuse large B cell lymphoma patients receiving first-line therapy. BMC Med 2022; 20:369. [PMID: 36280874 PMCID: PMC9594942 DOI: 10.1186/s12916-022-02562-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has been proven to be a promising tumor-specific biomarker in solid tumors, but its clinical utility in risk stratification and early prediction of relapse for diffuse large B cell lymphoma (DLBCL) has not been well explored. METHODS Here, using a lymphoma-specific sequencing panel, we assessed the prognostic and predictive utilities of ctDNA measurements before, during, and after first-line therapy in 73 Chinese DLBCL patients. RESULTS The pretreatment ctDNA level serving as an independent prognostic factor for both progression-free survival (PFS, adjusted HR 2.47; p = 0.004) and overall survival (OS, adjusted HR 2.49; p = 0.011) was confirmed in our cohort. Furthermore, the patients classified as molecular responders who presented a larger decrease in ctDNA levels after the initial two treatment cycles had more favorable PFS (unreached vs. 6.25 months; HR 5.348; p = 0.0015) and OS (unreached vs. 25.87; HR 4.0; p = 0.028) than non-responders. In addition, interim ctDNA clearance may be an alternative noninvasive method of positron emission tomography and computed tomography (PET-CT) for predicting better PFS (HR 3.65; p = 0.0033) and OS (HR 3.536; p = 0.016). We also demonstrated that posttreatment ctDNA was a sensitive indicator for detecting minimal residual disease (MRD) in patients with a high risk of recurrence (HR 6.471; p = 0.014), who were otherwise claimed to achieve radiographic CR (complete remission). CONCLUSIONS CtDNA is a promising noninvasive tool for prognosis prediction, response assessment, and early relapse prediction of first-line treatment in DLBCL patients.
Collapse
Affiliation(s)
- Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunyang Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Xiaojuan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Jianhua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Quanyu Yang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Dandan Zhao
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Tonghui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China.
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Kim Y, Shin S, Lee ST, Lee CS. A Case of Spontaneous Regression and Recurrence of Primary Vitreoretinal Lymphoma. Ocul Immunol Inflamm 2022; 30:1980-1983. [PMID: 34255584 DOI: 10.1080/09273948.2021.1916040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To report a case of primary vitreoretinal lymphoma (PVRL) showing recurrence after spontaneous regression, diagnosed with the aid of next-generation sequencing (NGS). METHODS Retrospective case report. RESULTS A 61-year-old immunocompetent Korean woman presented with subretinal lesions suspected of PVRL, which resolved spontaneously in 2 months. After 8 months, the lesion recurred and diagnostic vitrectomy was performed. The cytologic examination of the vitreous was indeterminate as there was only minimal vitreous opacity present at the time of surgery. NGS identified significant mutations including single nucleotide variants in MYD88 L265P, which is a unique hallmark of VRL, in vitreous sample, and the diagnosis of PVRL was made. CONCLUSION This case showed PVRL can spontaneously regress almost completely, then recur, so careful ophthalmic and systemic follow-ups are warranted. When cytological confirmation is challenging due to the minimal disease involvement in the vitreous, NGS is effective in confirming the mutation profiles of PVRL.
Collapse
Affiliation(s)
- Yeji Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Melli B, Gentile P, Nicoli D, Farnetti E, Croci S, Gozzi F, Bolletta E, De Simone L, Sanguedolce F, Palicelli A, Zizzo M, Ricci S, Ilariucci F, Rossi C, Cavazza A, Ascani S, Cimino L, Zanelli M. Primary Vitreoretinal Lymphoma: Current Diagnostic Laboratory Tests and New Emerging Molecular Tools. Curr Oncol 2022; 29:6908-6921. [PMID: 36290820 PMCID: PMC9600627 DOI: 10.3390/curroncol29100543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Primary vitreoretinal lymphoma (PVRL), a rare aggressive malignancy primarily involving the retina and/or the vitreous, is a major diagnostic challenge for clinicians (who commonly misdiagnose it as chronic uveitis) as well as for pathologists (for biological and technical reasons). Delays in diagnosis and treatment are responsible for visual impairments and life-threatening consequences, usually related to central nervous system involvement. The identification of lymphoma cells in vitreous fluid, obtained by vitrectomy, is required for diagnosis. Of note, the scarcity of neoplastic cells in small volumes of vitreous sample, and the fragility of lymphoma cells with degenerative changes caused by previous steroid use for presumed uveitis makes diagnosis based on cytology plus immunophenotyping difficult. Interleukin levels, immunoglobulin heavy chain or T-cell receptor gene rearrangements, and MYD88 mutation are applied in combination with cytology to support diagnosis. We aim to describe the current laboratory technologies for PVRL diagnosis, focusing on the main issues that these methods have. In addition, new emerging diagnostic strategies, such as next-generation sequencing analysis, are discussed. The genetic profile of PVRL remains largely unexplored. Better knowledge of genetic alterations is critical for precision medicine interventions with target-based treatments of this lymphoma for which no standardised treatment protocol currently exists.
Collapse
Affiliation(s)
- Beatrice Melli
- Molecular Pathology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Obstetrics and Gynaecology, Fertility Center, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Pietro Gentile
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy
| | - Davide Nicoli
- Molecular Pathology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Enrico Farnetti
- Molecular Pathology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Elena Bolletta
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca De Simone
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Fiorella Ilariucci
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cristiana Rossi
- Pathology Unit, Azienda Unità Sanitaria Locale ASL5 La Spezia, 19124 La Spezia, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
11
|
Heiferman MJ, Yu MD, Mruthyunjaya P. Update in Molecular Testing for Intraocular Lymphoma. Cancers (Basel) 2022; 14:4546. [PMID: 36230469 PMCID: PMC9558525 DOI: 10.3390/cancers14194546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
The diagnosis of primary vitreoretinal lymphoma and central nervous system lymphoma is challenging. In cases with intraocular involvement, vitreous biopsy plays a pivotal role. Several diagnostic tests are employed to confirm a diagnosis and include cytologic evaluation, immunohistochemistry, flow cytometry, and cytokine analysis. The limitations of these conventional diagnostic tests stem from the often paucicellular nature of vitreous biopsy specimens and the fragility of malignant cells ex vivo. Several emerging molecular techniques show promise in improving the diagnostic yield of intraocular biopsy, possibly enabling more accurate and timely diagnoses. This article will review existing diagnostic modalities for intraocular lymphoma, with an emphasis on currently available molecular tests.
Collapse
Affiliation(s)
- Michael J. Heiferman
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Michael D. Yu
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| |
Collapse
|
12
|
Wang X, Su W, Gao Y, Feng Y, Wang X, Chen X, Hu Y, Ma Y, Ou Q, Liang D, Huang H. A pilot study of the use of dynamic analysis of cell-free DNA from aqueous humor and vitreous fluid for the diagnosis and treatment monitoring of vitreoretinal lymphomas. Haematologica 2022; 107:2154-2162. [PMID: 35142151 PMCID: PMC9425330 DOI: 10.3324/haematol.2021.279908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
The diagnosis of vitreoretinal lymphoma (VRL), a rare subtype of primary central nervous system lymphoma, is challenging. We aimed to investigate the mutational landscape of VRL by sequencing circulating tumor DNA (ctDNA) from aqueous humor (AH) and/or vitreous fluid (VF), as well as applying ctDNA sequencing to diagnosis and treatment monitoring. Baseline AH and/or VF specimens from 15 VRL patients underwent comprehensive genomic profiling using targeted next-generation sequencing. The molecular profiles of paired baseline AH and VF specimens were highly concordant, with comparable allele frequencies. However, the genetic alterations detected in cerebrospinal fluid ctDNA only partially overlapped with those from simultaneously collected AH/VF samples, with much lower allele frequencies. Serial post-treatment AH or VF samples were available for five patients and their changes in ctDNA allele frequency displayed a similar trend as the changes in interleukin-10 levels; an indicator of response to treatment. A cohort of 23 patients with primary central nervous system lymphoma was included as a comparison group for the genetic landscape and evaluations of the efficacy of ibrutinib. More MYD88 mutations, but fewer IRF4 mutations and CDKN2A/B copy number losses were observed in the baseline samples of primary central nervous system lymphoma than VRL patients. The objective response rate to ibrutinib treatment was much higher for patients with primary central nervous system lymphoma (64.7%, 11/17) than for those with VRL (14.3%, 1/7). In summary, we provide valuable clinical evidence that AH is a good source of tumor genomic information and can substitute VF. Moreover, molecular profiling of AH has clinical utility for the diagnosis of VRL and treatment monitoring.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Xiaoxia Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yutong Ma
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou.
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou.
| |
Collapse
|
13
|
Zhuang Z, Zhang Y, Zhang X, Zhang M, Zou D, Zhang L, Jia C, Zhang W. Circulating cell-free DNA and IL-10 from cerebrospinal fluids aid primary vitreoretinal lymphoma diagnosis. Front Oncol 2022; 12:955080. [PMID: 36059608 PMCID: PMC9434796 DOI: 10.3389/fonc.2022.955080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) is a rare variant of primary central nervous system lymphoma (PCNSL) that presents diagnostic challenges. Here, we focused on circulating cell-free DNA (cfDNA) and interleukin-10 (IL-10) isolated from cerebrospinal fluid. Twenty-three VRL patients (17 PVRL, 2 PCNSL/O, and 4 relapsed VRL, from 10/2018 to 12/2021) and 8 uveitis patients were included in this study. CSF samples from 19 vitreoretinal lymphoma patients had sufficient cfDNA for next-generation sequencing. Of these patients, 73.7% (14/19) had at least one meaningful non-Hodgkin lymphoma-related mutation. The characteristic MYD88 L265P mutation was detected in the CSF of 12 VRL patients, with a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 63.2%, 100%, 100%, and 46.2%, respectively. No meaningful lymphoma related mutations were found in CSF samples from uveitis controls with typical intraocular lesions. Meanwhile, CSF IL-10 levels were elevated in 95.7% of the VRL patients, with a sensitivity, specificity, PPV, and NPV of 95.7%, 100%, 100% and 88.9%, respectively. Key somatic mutations like MYD88 L265P and CD79B detected from CSF cfDNA and elevated CSF IL-10 levels can be promising adjuncts for primary vitreoretinal lymphoma diagnosis.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meifen Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongmei Zou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,*Correspondence: Wei Zhang,
| |
Collapse
|
14
|
Gu J, Jiang T, Liu S, Ping B, Li R, Chen W, Wang L, Huang X, Xu G, Chang Q. Cell-Free DNA Sequencing of Intraocular Fluid as Liquid Biopsy in the Diagnosis of Vitreoretinal Lymphoma. Front Oncol 2022; 12:932674. [PMID: 35928872 PMCID: PMC9343589 DOI: 10.3389/fonc.2022.932674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose To seek novel diagnostic approaches, we improved the workflow of cell-free DNA (cfDNA) sequencing and evaluated its feasibility in vitreoretinal lymphoma (VRL) specimens; the profile of mutations was preliminarily analyzed for potential diagnostic value. Methods The study was a diagnostic trial. 23 eyes of 23 patients with VRL and 25 eyes of 25 patients with inflammatory eye diseases were enrolled. Approximate 500μl undiluted vitreous humor and 10ml diluted vitreous fluid was obtained through diagnostic vitrectomy and sent for cytopathological examinations. 500μl of the diluted vitreous fluid was spared for cfDNA sequencing. For cfDNA sequencing, DNA fragmentation procedure was added to the workflow to improve the extraction efficiency; mutations detected were analyzed for potential diagnostic model. The sensitivity and specificity of the cytopathology and cfDNA sequencing were compared. The clinical manifestations were preliminarily analyzed for potential correlations with the genotypes. Results CfDNA sequencing was accomplished in 23 eyes with VRL and 20 eyes with inflammatory eye diseases. VRL-related mutated genes included MYD88 (18 eyes, 78%), ETV6 (11 eyes, 48%), PIM1 (11 eyes,48%), BTG2 (7 eyes, 30%), IRF4 (7 eyes, 30%), CD79B (6 eyes, 26%), LRP1B (6 eyes, 26%), etc. Logistic regression based on the mutations of MYD88 and ETV6 was of the potential for the diagnosis of VRL (P<0.001, adjusted R2 = 0.789, sensitivity 0.913, specificity 0.950); by comparison, the sensitivity and specificity of the vitreous cytopathology were 0.826 and 1.000, respectively. Further analysis of the mutation profile showed that patients carrying CD79B mutation tended to have higher intraocular interleukin-10 level (P=0.030), that CARD11 mutation was correlated with younger age at ocular onset (P=0.039), and that patients with intracranial involvement carried more multiple-site mutations in the BTG2 gene (P=0.013). Conclusions The improved workflow of CfDNA sequencing is of sound feasibility in a limited amount of vitreous humor. The logistic model based on the mutations could help to provide reliable clues for the diagnosis of VRL.
Collapse
Affiliation(s)
- Junxiang Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Tingting Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Shixue Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Bo Ping
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ruiwen Li
- Department of Nursing, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wenwen Chen
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Ling Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
| | - Qing Chang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Science, Shanghai, China
- *Correspondence: Qing Chang,
| |
Collapse
|
15
|
Fend F, Bonzheim I, Kakkassery V, Heindl LM, Illerhaus G. [Lymphoma of the eye and its adnexa : Modern pathological diagnostics and systemic treatment]. DIE OPHTHALMOLOGIE 2022; 119:664-674. [PMID: 35925409 DOI: 10.1007/s00347-022-01650-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Malignant lymphomas of the eye and its adnexal structures account for approximately 5-15% of extranodal lymphomas. According to anatomic and biological criteria, two large groups of lymphomas in and around the eye need to be distinguished: (1) primary lymphomas of intraocular structures and (2) primary lymphomas of ocular adnexa. Furthermore, there is a large spectrum of secondary manifestations of malignant lymphomas in ocular and periocular structures. OBJECTIVE This article gives a summary of the classification and molecular pathology of various intraocular and periocular lymphomas as well as oncological systemic treatment with a focus on primary vitreoretinal lymphomas. METHODS A selective literature search was carried out in PubMed on the topic of intraocular and periocular lymphomas and own experiences are presented. RESULTS The treatment of primary vitreoretinal lymphomas (PVRL) is an interdisciplinary challenge and despite the apparently localized disease, systemic treatment concepts are necessary to reduce the high risk of secondary involvement of the central nervous system (CNS). Therefore, it is crucial that the substances used can penetrate the CNS, and protocols should be chosen in accordance with the treatment concepts for primary CNS lymphomas. The knowledge on the genetics and biology of ocular lymphomas generated by modern high throughput methods enable not only improved diagnostics using molecular methods but also provide rationales for targeted therapeutic approaches. CONCLUSION A deep understanding of the biological and molecular principles of intraocular and periocular lymphomas forms a basic prerequisite for precise diagnostics and the use of targeted systemic treatment.
Collapse
Affiliation(s)
- Falko Fend
- Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland.
- Comprehensive Cancer Center Tübingen-Stuttgart, Tübingen-Stuttgart, Deutschland.
| | - Irina Bonzheim
- Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland
- Comprehensive Cancer Center Tübingen-Stuttgart, Tübingen-Stuttgart, Deutschland
| | - Vinodh Kakkassery
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | - Ludwig M Heindl
- Zentrum für Augenheilkunde, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
- Centrum für Integrierte Onkologie (CIO) Aachen-Bonn-Köln-Düsseldorf, Köln, Deutschland
| | - Gerald Illerhaus
- Klinik für Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Klinikum der Landeshauptstadt Stuttgart gKAöR | Standort Mitte, Katharinenhospital, Kriegsbergstr. 60, 70174, Stuttgart, Deutschland.
- Stuttgart Cancer Center/Tumorzentrum Eva Mayr-Stihl, Stuttgart, Deutschland.
| |
Collapse
|
16
|
Bonzheim I, Sander P, Salmerón-Villalobos J, Süsskind D, Szurman P, Gekeler F, Spitzer MS, Steinhilber J, Kohler E, Büssgen M, Schittenhelm J, Salaverria I, Campo E, Coupland SE, Quintanilla-Martinez L, Fend F. The molecular hallmarks of primary and secondary vitreoretinal lymphoma. Blood Adv 2022; 6:1598-1607. [PMID: 34448823 PMCID: PMC8905692 DOI: 10.1182/bloodadvances.2021004212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/01/2021] [Indexed: 12/03/2022] Open
Abstract
Vitreoretinal lymphoma (VRL) is a rare subtype of diffuse large B-cell lymphoma (DLBCL) considered a variant of primary central nervous system lymphoma (PCNSL). The diagnosis of VRL requires examination of vitreous fluid, but cytologic differentiation from uveitis remains difficult. Because of its rarity and the difficulty in obtaining diagnostic material, little is known about the genetic profile of VRL. The purpose of our study was to investigate the mutational profile of a large series of primary and secondary VRL. Targeted next-generation sequencing using a custom panel containing the most frequent mutations in PCNSL was performed on 34 vitrectomy samples from 31 patients with VRL and negative controls with uveitis. In a subset of cases, genome-wide copy number alterations (CNAs) were assessed using the OncoScan platform. Mutations in MYD88 (74%), PIM1 (71%), CD79B (55%), IGLL5 (52%), TBL1XR1 (48%), ETV6 (45%), and 9p21/CDKN2A deletions (75%) were the most common alterations, with similar frequencies in primary (n = 16), synchronous (n = 3), or secondary (n = 12) VRL. This mutational spectrum is similar to MYD88mut/CD79Bmut (MCD or cluster 5) DLBCL with activation of Toll-like and B-cell receptor pathways and CDKN2A loss, confirming their close relationship. OncoScan analysis demonstrated a high number of CNAs (mean 18.6 per case). Negative controls lacked mutations or CNAs. Using cell-free DNA of vitreous fluid supernatant, mutations present in cellular DNA were reliably detected in all cases examined. Mutational analysis is a highly sensitive and specific tool for the diagnosis of VRL and can also be applied successfully to cell-free DNA derived from the vitreous.
Collapse
Affiliation(s)
- Irina Bonzheim
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philip Sander
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Julia Salmerón-Villalobos
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomedica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Daniela Süsskind
- Centre of Ophthalmology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Peter Szurman
- Sulzbach Eye Clinic, Knappschaft Hospital Saar, Sulzbach, Germany
| | - Florian Gekeler
- Centre of Ophthalmology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
| | - Martin S. Spitzer
- Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Julia Steinhilber
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Esther Kohler
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Büssgen
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Itziar Salaverria
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomedica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomedica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Sarah E. Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; and
| | - Leticia Quintanilla-Martinez
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of General and Molecular Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Sehgal A, Pulido JS, Mashayekhi A, Milman T, Deák GG. Diagnosing Vitreoretinal Lymphomas-An Analysis of the Sensitivity of Existing Tools. Cancers (Basel) 2022; 14:cancers14030598. [PMID: 35158867 PMCID: PMC8833443 DOI: 10.3390/cancers14030598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diagnostics of vitreoretinal lymphoma is very challenging, as the possibility of receiving false negative results is common. We retrospectively analyzed the sensitivity of the most commonly used diagnostic methods including ancillary immunohistochemistry, Myeloid Differentiation Factor 88 (MyD88) L256P mutation analysis, polymerase chain reaction (PCR) for monoclonal rearrangements of immunoglobulin heavy chain (IgH) and T-cell Receptor (TCR) genes, flow cytometry, and IL10 and IL6 analysis, to diagnose vitreoretinal lymphomas from published data in the literature. MyD88 mutation analysis caused by a hotspot mutation in MyD88 was the most sensitive and had the lowest coefficient of variation. Abstract Vitreoretinal lymphoma (VRL) is a rare ocular pathology that is notorious for mimicking chronic uveitis, which is a seemingly benign condition in comparison. The most common form of VRL is the diffuse large B-cell type, and there has been a high mortality rate. This dismal prognosis can be improved significantly if the disease is diagnosed early, but until now there is no consensus on an appropriate diagnostic algorithm. We conducted a retrospective search of PubMed Central® and analyzed results from thirty-three studies that were published between 2011–2021. The chosen studies incorporated some popular testing tools for VRL, and our analyses focused on comparing the average sensitivity of five diagnostic methods. The methods included cytology including ancillary immunohistochemistry, Myeloid Differentiation Factor 88 (MyD88) mutation analysis, polymerase chain reaction (PCR) for monoclonal rearrangements of immunoglobulin heavy chain (IgH) and T-cell Receptor (TCR) genes, flow cytometry, and IL10 and IL6 analysis. Across the varied diagnostic methods employed in thirty-three studies explored in this analysis, MyD88 mutation assay emerged as a strong contender given its sensitivity and low coefficient of variation. There is an imminent need for the introduction of newer assays that can further improve the sensitivity of identifying MyD88 mutation in cancer cells seen in the vitreous.
Collapse
Affiliation(s)
- Anahita Sehgal
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.S.); (J.S.P.)
| | - Jose S. Pulido
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.S.); (J.S.P.)
- Bower Laboratory for Translational Medicine Vickie and Jack Farber, Vision Research Center, Wills Eye Hospital, Philadelphia, PA 19107, USA
| | - Arman Mashayekhi
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Tatyana Milman
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Gabor Gy Deák
- Department of Ophthalmology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40-4007-9310
| |
Collapse
|
18
|
Update on Novel Therapeutics for Primary CNS Lymphoma. Cancers (Basel) 2021; 13:cancers13215372. [PMID: 34771535 PMCID: PMC8582401 DOI: 10.3390/cancers13215372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Primary central nervous system lymphoma is a rare and aggressive form of non-Hodgkin lymphoma. While it is highly responsive to first-line chemo and radiation treatments, rates of relapse are high, demonstrating the need for improved therapeutic strategies. Recent advancements in the understanding of the pathophysiology of this disease have led to the identification of new potential treatment targets and the development of novel agents. This review aims to discuss different targeted strategies and review some of the data supporting these approaches, and discusses recently completed and ongoing clinical trials using these novel agents. Abstract Primary central nervous system lymphoma (PCNSL) is a rare lymphoma isolated to the central nervous system or vitreoretinal space. Standard treatment consists of cytotoxic methotrexate-based chemotherapy, with or without radiation. Despite high rates of response, relapse is common, highlighting the need for novel therapeutic approaches. Recent advances in the understanding of PCNSL have elucidated mechanisms of pathogenesis and resistance including activation of the B-cell receptor and mammalian target of rapamycin pathways. Novel treatment strategies such as the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, phosphatidylinositol-3 kinase (PI3K) inhibitors, and immunomodulatory drugs are promising. Increasingly, evidence suggests immune evasion plays a role in PCNSL pathogenesis and several immunotherapeutic strategies including checkpoint inhibition and targeted chimeric antigen receptor T (CAR-T) cells are under investigation. This review provides a discussion on the challenges in development of targeted therapeutic strategies, an update on recent treatment advances, and offers a look toward ongoing clinical studies.
Collapse
|
19
|
Sobolewska B, Chee SP, Zaguia F, Goldstein DA, Smith JR, Fend F, Mochizuki M, Zierhut M. Vitreoretinal Lymphoma. Cancers (Basel) 2021; 13:3921. [PMID: 34439078 PMCID: PMC8394064 DOI: 10.3390/cancers13163921] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Vitreoretinal lymphoma (VRL) is a rare variant of primary central nervous system lymphoma (PCNSL), mostly of diffuse large B cell lymphoma, which affects the retina and/or the vitreous with or without optic nerve involvement. The disease course is aggressive. Up to 90% of the patients develop central nervous system lymphoma within one year. The diagnosis of VRL is challenging due to nonspecific chronic and relapsing uveitis and is made by anterior chamber tab or vitreous aspirate biopsy. There is no established treatment protocol for VRL patients with bilateral involvement without CNS involvement. There are suggestions to use only intravitreal chemotherapy with methotrexate and/or rituximab. Alternatively, systemic high-dose MTX treatment or external beam radiotherapy is used. Further studies are needed to prove and confirm the prophylactic systemic therapy in preventing CNS involvement in limited VRL.
Collapse
Affiliation(s)
- Bianka Sobolewska
- Center of Ophthalmology, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Soon-Phaik Chee
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore;
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 168751, Singapore
| | - Fatma Zaguia
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (F.Z.); (D.A.G.)
| | - Debra Anne Goldstein
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (F.Z.); (D.A.G.)
| | - Justine R. Smith
- College of Medicine & Public Health, Flinders University, Adelaide 5042, Australia;
| | - Falko Fend
- Institute for Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany;
| | | | - Manfred Zierhut
- Center of Ophthalmology, University of Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|
20
|
Cunningham ET, Miserocchi E, Smith JR, Gonzales JA, Zierhut M. Intraocular Lymphoma. Ocul Immunol Inflamm 2021; 29:425-429. [PMID: 34296968 DOI: 10.1080/09273948.2021.1941684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emmett T Cunningham
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA.,The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA.,The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| | - Elisabetta Miserocchi
- The Department of Ophthalmology, San Raffaele Scientific Institute, University Vita-Salute, Milan, Italy
| | - Justine R Smith
- Flinders University College of Medicine & Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - John A Gonzales
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA.,Department of Ophthalmology, UCSF School of Medicine, California, USA
| | - Manfred Zierhut
- Centre for Ophthalmology, University Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Primary vitreoretinal lymphoma: A diagnostic and management challenge. Blood 2021; 138:1519-1534. [PMID: 34036310 DOI: 10.1182/blood.2020008235] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) is a rare form of primary central nervous system lymphoma (PCNSL) arising in the intraocular compartment without brain involvement. Despite its apparent indolent clinical course, PVRL can cause permanent vision loss and CNS relapse, the major cause of death in PVRL patients. The pathophysiology of PVRL is unknown. As in PCNSL, the transformation of the tumor cells likely originates outside the CNS, before the cells migrate to the eye and proliferate within an immune-permissive microenvironment. PVRL exhibits a biased immunoglobulin repertoire, suggesting underlying antigen selection. The diagnosis remains challenging, requiring close coordination between ophthalmologists and cytologists. Because of their rarity and fragility in the vitreous, lymphoma cells cannot always be identified. Interleukin levels, molecular biology and imaging are used in combination with clinical ophthalmological examination to support the diagnosis of PVRL. Multi-institutional prospective studies are urgently needed to validate the equivocal conclusions regarding treatments drawn from heterogeneous retrospective or small cohort studies. Intravitreal injections of methotrexate or rituximab or local radiotherapy are effective at clearing tumor cells within the eyes but do not prevent CNS relapse. Systemic treatment based on high-dose methotrexate chemotherapy, with or without local treatment, might reduce this risk. At relapse, intensive consolidation chemotherapy followed by stem cell transplantation can be considered. Single-agent ibrutinib, lenalidomide and temozolomide treatments are effective in patients with relapsed PVRL and should be tested as first-line treatments. Therapeutic response assessment based on a clinical examination is improved by measuring cytokine levels but still needs to be refined.
Collapse
|
22
|
Choi S, Shin S, Lee ST, Lee J, Lee JS, Kim B, Lee CS. Serial Detection of MYD88 L265P Mutation in the Aqueous Humor of a Patient with Vitreoretinal Lymphoma for Disease Monitoring. Ocul Immunol Inflamm 2020; 29:485-489. [PMID: 32965155 DOI: 10.1080/09273948.2020.1802488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To report a case of a patient whose MYD88 mutation disappeared from the aqueous humor following treatment with intravitreal methotrexate. METHODS A retrospective review of clinical, histopathological and imaging records. RESULTS A 49-year-old woman presented with bilateral primary vitreoretinal lymphoma confirmed by molecular and next-generation sequencing studies on vitreous biopsy samples. Initially, the MYD88 L265P mutation was detected in aqueous samples of both eyes. Serial testing for MYD88 L265P mutations performed on aqueous samples collected at the time of the weekly intravitreal methotrexate injections showed the mutation ceased to be detected after four weekly injections in the non-vitrectomized right eye and after two weekly injections in the vitrectomized left eye. Clinical improvement accompanied the negativization of the mutation in both eyes. CONCLUSION We present a case that demonstrates the possible utilization of serial testing for the MYD88 L265P mutation as a tool for monitoring disease course in vitreoretinal lymphoma.
Collapse
Affiliation(s)
- Seonghee Choi
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihei Sara Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Borahm Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|