1
|
Thaw K, Harrison CN, Sriskandarajah P. JAK Inhibitors for Myelofibrosis: Strengths and Limitations. Curr Hematol Malig Rep 2024; 19:264-275. [PMID: 39400853 PMCID: PMC11567979 DOI: 10.1007/s11899-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW The landscape of myelofibrosis (MF) has changed since the discovery of the JAK2 V617F mutation and subsequent development of JAK inhibitors (JAKis). However, treatment with JAKis remain a challenge. In this review we critically analyze the strengths and limitations of currently available JAK inhibitors. RECENT FINDINGS In MF patients, JAK inhibitors have been associated with reduced symptom burden and spleen size, as well as improved survival. However, durability of response and development of treatment resistance remain an issue. Recently, there has been increased efforts to optimize treatment with the development of highly selective JAK inhibitors, as well as use of combination agents to counter disease resistance through targeting aberrant signaling pathways. Treatment of MF patients with JAKi therapy can be challenging but the development of more potent and selective JAK inhibitors, as well as combination therapies, represent exciting treatment advances in this field.
Collapse
Affiliation(s)
- K Thaw
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - C N Harrison
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - P Sriskandarajah
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
2
|
Pinczés LI, Jóna Á, Mezei G, Kenyeres A, Vekszler PP, Illés Á, Simon Z. Successful ruxolitinib rechallenge after fedratinib failure in a patient with overt myelofibrosis. Ann Hematol 2024; 103:4817-4819. [PMID: 39090340 DOI: 10.1007/s00277-024-05825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Affiliation(s)
- László Imre Pinczés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Jóna
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Mezei
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna Kenyeres
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Pambó Vekszler
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Simon
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Sarson-Lawrence KTG, Hardy JM, Iaria J, Stockwell D, Behrens K, Saiyed T, Tan C, Jebeli L, Scott NE, Dite TA, Nicola NA, Leis AP, Babon JJ, Kershaw NJ. Cryo-EM structure of the extracellular domain of murine Thrombopoietin Receptor in complex with Thrombopoietin. Nat Commun 2024; 15:1135. [PMID: 38326297 PMCID: PMC10850085 DOI: 10.1038/s41467-024-45356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.
Collapse
Affiliation(s)
- Kaiseal T G Sarson-Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Joshua M Hardy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Josephine Iaria
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Dina Stockwell
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Kira Behrens
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Tamanna Saiyed
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Cyrus Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Toby A Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
4
|
Smallbone P, Louw A, Purtill D. Laboratory methods of monitoring disease response after allogeneic haematopoietic stem cell transplantation for myelofibrosis. Pathology 2024; 56:24-32. [PMID: 38071159 DOI: 10.1016/j.pathol.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 01/24/2024]
Abstract
The era of molecular prognostication in myelofibrosis has allowed comprehensive assessment of disease risk and informed decisions regarding allogeneic haematopoietic stem cell transplantation (HSCT). However, monitoring disease response after transplantation is difficult, and limited by disease and sample-related factors. The emergence of laboratory techniques sensitive enough to monitor measurable residual disease is promising in predicting molecular and haematological relapse and guiding management. This paper summarises the existing literature regarding methods for detecting and monitoring disease response after HSCT in myelofibrosis and explores the therapeutic use of measurable residual disease (MRD) assays in transplant recipients. Laboratory assessment of disease response in myelofibrosis post-allogeneic transplant is limited by disease and treatment characteristics and by the sensitivity of available conventional molecular assays. The identification of MRD has prognostic implications and may allow early intervention to prevent relapse. Further applicability is limited by mutation-specific assay variability, a lack of standardisation and sample considerations.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Haematology, Fiona Stanley Hospital, Perth, WA, Australia; PathWest, Fiona Stanley Hospital, Perth, WA, Australia.
| | - Alison Louw
- PathWest, Fiona Stanley Hospital, Perth, WA, Australia
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, WA, Australia; PathWest, Fiona Stanley Hospital, Perth, WA, Australia
| |
Collapse
|
5
|
Kröger N, Wolschke C, Gagelmann N. How I treat transplant-eligible patients with myelofibrosis. Blood 2023; 142:1683-1696. [PMID: 37647853 DOI: 10.1182/blood.2023021218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Despite the approval of Janus kinase inhibitors and novel agents for patients with myelofibrosis (MF), disease-modifying responses remain limited, and hematopoietic stem cell transplantation (HSCT) remains the only potentially curative treatment option. The number of HSCTs for MF continues to increase worldwide, but its inherent therapy-related morbidity and mortality limit its use for many patients. Furthermore, patients with MF often present at an older age, with cytopenia, splenomegaly, and severe bone marrow fibrosis, posing challenges in managing them throughout the HSCT procedure. Although implementation of molecular analyses enabled improved understanding of disease mechanisms and subsequently sparked development of novel drugs with promising activity, prospective trials in the HSCT setting are often lacking, making an evidence-based decision process particularly difficult. To illustrate how we approach patients with MF with respect to HSCT, we present 3 different clinical scenarios to capture relevant aspects that influence our decision making regarding indication for, or against, HSCT. We describe how we perform HSCT according to different risk categories and, furthermore, discuss our up-to-date approach to reduce transplant-related complications. Last, we show how to harness graft-versus-MF effects, particularly in the posttransplant period to achieve the best possible outcomes for patients.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Zhou M, Qi J, Gu C, Wang H, Zhang Z, Wu D, Han Y. Avatrombopag for the treatment of thrombocytopenia post hematopoietic stem-cell transplantation. Ther Adv Hematol 2022; 13:20406207221127532. [PMID: 36185780 PMCID: PMC9523859 DOI: 10.1177/20406207221127532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Thrombocytopenia post hematopoietic stem-cell transplantation (HCT) usually contributes to poor outcomes with no standardized treatment. Eltrombopag and romiplostim can be feasible for post-HCT thrombocytopenia, but the use of avatrombopag has not yet been evaluated. Objectives: We aimed to evaluate the efficacy and safety of avatrombopag treatment in patients diagnosed with post-HCT thrombocytopenia. Design: In this retrospective study, we evaluated the efficacy and safety of avatrombopag treatment in a cohort of 61 patients diagnosed with thrombocytopenia post HCT in our clinical center. Methods: Avatrombopag was initiated at 20 mg daily, with a dosage adjustment to achieve platelet recovery to >20 × 109/l independent from transfusion for 7 consecutive days (overall response, OR) or to >50 × 109/l free from transfusion for 7 consecutive days (complete response, CR). Factors influencing OR and CR were studied in univariate and multivariate analyses, respectively. Within the follow-up, adverse events like myelofibrosis, thrombosis, and organ toxicities were monitored carefully. Results: The overall response rate (ORR) to avatrombopag was 68.9% and the cumulative incidence (CI) of OR was 69.1%. The complete response rate (CRR) and the CI of CR were both 39.3%. The median days from avatrombopag initiation to OR and CR were 21 and 25 days, respectively. An adequate number of megakaryocytes before the initiation of avatrombopag was an independent protective factor of avatrombopag treatment for OR (hazard ratio, HR = 4.628, 95% confidence interval 1.92–11.15, p = 0.0006) and CR (HR = 4.892, 95% confidence interval 1.58–15.18, p = 0.006). Avatrombopag was well tolerated in all patients with no severe adverse events. Conclusion: Our findings suggested that avatrombopag can be optional for thrombocytopenia post HCT.
Collapse
Affiliation(s)
- Meng Zhou
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiaqian Qi
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Chengyuan Gu
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Hong Wang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Ziyan Zhang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, 188 Shizi Street, Suzhou, Jiangsu province, China 215006
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, 188 Shizi Street, Suzhou, Jiangsu province, China 215006
| |
Collapse
|
8
|
Harrison CN, Gupta VK, Gerds AT, Rampal R, Verstovsek S, Talpaz M, Kiladjian JJ, Mesa R, Kuykendall AT, Vannucchi AM, Palandri F, Grosicki S, Devos T, Jourdan E, Wondergem MJ, Al-Ali HK, Buxhofer-Ausch V, Alvarez-Larrán A, Patriarca A, Kremyanskaya M, Mead AJ, Akhani S, Sheikine Y, Colak G, Mascarenhas J. Phase III MANIFEST-2: pelabresib + ruxolitinib vs placebo + ruxolitinib in JAK inhibitor treatment-naive myelofibrosis. Future Oncol 2022; 18:2987-2997. [PMID: 35950489 DOI: 10.2217/fon-2022-0484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, typically associated with disease-related symptoms, splenomegaly, cytopenias and bone marrow fibrosis. Patients experience a significant symptom burden and a reduced life expectancy. Patients with MF receive ruxolitinib as the current standard of care, but the depth and durability of responses and the percentage of patients achieving clinical outcome measures are limited; thus, a significant unmet medical need exists. Pelabresib is an investigational small-molecule bromodomain and extraterminal domain inhibitor currently in clinical development for MF. The aim of this article is to describe the design of the ongoing, global, phase III, double-blind, placebo-controlled MANIFEST-2 study evaluating the efficacy and safety of pelabresib and ruxolitinib versus placebo and ruxolitinib in patients with JAKi treatment-naive MF. Clinical Trial Registration: NCT04603495 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Claire N Harrison
- Guys & St Thomas' NHS Foundation Trust, Guy's Hospital, London, SE1 9RT, UK
| | - Vikas K Gupta
- Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 1Z5, Canada
| | - Aaron T Gerds
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Raajit Rampal
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moshe Talpaz
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109-5936, USA
| | - Jean-Jacques Kiladjian
- Clinical Investigation Center (INSERM CIC 1427), Université Paris Cité and Hôpital Saint-Louis, Paris, 75010, France
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio Cancer Center, San Antonio, TX 78229-3900, USA
| | - Andrew T Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alessandro M Vannucchi
- Department of Hematology, Azienda Ospedaliero-Universitaria Careggi, Firenze, 50139, Italy
| | - Francesca Palandri
- Department of Hematology, IRCCS Azienda Ospedaliero-Universitaria S. Orsola-Malpighi, Bologna, 40138, Italy
| | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, Medical University of Silesia in Katowice, Katowice, 40-055, Poland
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven & Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, 3000, Belgium
| | - Eric Jourdan
- Department of Hematology, C.H.U., Nîmes, 30029, France
| | - Marielle J Wondergem
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
| | | | - Veronika Buxhofer-Ausch
- Department of Internal Medicine I with Hematology, Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen & Johannes Kepler University Linz, Linz, 4020, Austria
| | | | - Andrea Patriarca
- Hematology Unit, Azienda Ospedaliero Universitaria Maggiore della Carità di Novara, Novara, 28100, Italy
| | - Marina Kremyanskaya
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DX, UK
| | | | - Yuri Sheikine
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA 02110, USA
| | - Gozde Colak
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA 02110, USA
| | - John Mascarenhas
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
10
|
Pastor-Galán I, Martín I, Ferrer B, Hernández-Boluda JC. Impact of molecular profiling on the management of patients with myelofibrosis. Cancer Treat Rev 2022; 109:102435. [PMID: 35839532 DOI: 10.1016/j.ctrv.2022.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Myelofibrosis (MF) is a chronic myeloproliferative neoplasm (MPN) characterized by a highly heterogeneous clinical course, which can be complicated by severe constitutional symptoms, massive splenomegaly, progressive bone marrow failure, cardiovascular events, and development of acute leukemia. Constitutive signaling through the JAK-STAT pathway plays a fundamental role in its pathogenesis, generally due to activating mutations of JAK2, CALR and MPL genes (i.e., the MPN driver mutations), present in most MF patients. Next Generation Sequencing (NGS) panel testing has shown that additional somatic mutations can already be detected at the time of diagnosis in more than half of patients, and that they accumulate along the disease course. These mutations, mostly affecting epigenetic modifiers or spliceosome components, may cooperate with MPN drivers to favor clonal dominance or influence the clinical phenotype, and some, such as high molecular risk mutations, correlate with a more aggressive clinical course with poor treatment response. The current main role of molecular profiling in clinical practice is prognostication, principally for selecting high-risk patients who may be candidates for transplantation, the only curative treatment for MF to date. To this end, contemporary prognostic models incorporating molecular data are useful tools to discriminate different risk categories. Aside from certain clinical situations, decisions regarding medical treatment are not based on patient molecular profiling, yet this approach may become more relevant in novel treatment strategies, such as the use of vaccines against the mutant forms of JAK2 or CALR, or drugs directed against actionable molecular targets.
Collapse
Affiliation(s)
| | - Iván Martín
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Blanca Ferrer
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | | |
Collapse
|
11
|
Jin X, Ng V, Zhao M, Liu L, Higashimoto T, Lee ZH, Chung J, Chen V, Ney G, Kandarpa M, Talpaz M, Li Q. Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation. Dis Model Mech 2022; 15:274899. [PMID: 35352806 PMCID: PMC9092650 DOI: 10.1242/dmm.049088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
RAS mutations occur in a broad spectrum of human hematopoietic malignancies. Activating Ras mutations in blood cells leads to hematopoietic malignancies in mice. In murine hematopoietic stem cells (HSCs), mutant N-RasG12D activates Stat5 to dysregulate stem cell function. However, the underlying mechanism remains elusive. In this study, we demonstrate that Stat5 activation induced by a hyperactive Nras mutant, G12D, is dependent on Jak2 activity. Jak2 is activated in Nras mutant HSCs and progenitors (HSPCs), and inhibiting Jak2 with ruxolitinib significantly decreases Stat5 activation and HSPC hyper-proliferation in vivo in NrasG12D mice. Activation of Jak2-Stat5 is associated with downregulation of Socs2, an inhibitory effector of Jak2/Stat5. Restoration of Socs2 blocks NrasG12D HSC reconstitution in bone marrow transplant recipients. SOCS2 downregulation is also observed in human acute myeloid leukemia (AML) cells that carry RAS mutations. RAS mutant AML cells exhibited suppression of the enhancer active marker H3K27ac at the SOCS2 locus. Finally, restoration of SOCS2 in RAS mutant AML cells mitigated leukemic growth. Thus, we discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2. Summary: Jak2/Stat5 is often considered to be parallel to or upstream of Ras signaling. We have discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2.
Collapse
Affiliation(s)
- Xi Jin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Ng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meiling Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomoyasu Higashimoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zheng Hong Lee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jooho Chung
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gina Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Tvorogov D, Thompson‐Peach CAL, Foßelteder J, Dottore M, Stomski F, Onnesha SA, Lim K, Moretti PAB, Pitson SM, Ross DM, Reinisch A, Thomas D, Lopez AF. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep 2022; 23:e52904. [PMID: 35156745 PMCID: PMC8982588 DOI: 10.15252/embr.202152904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.
Collapse
Affiliation(s)
- Denis Tvorogov
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Chloe A L Thompson‐Peach
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Johannes Foßelteder
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
| | - Mara Dottore
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Frank Stomski
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Suraiya A Onnesha
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Kelly Lim
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Paul A B Moretti
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Stuart M Pitson
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - David M Ross
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Department of HaematologyFlinders University and Medical CentreAdelaideSAAustralia
| | - Andreas Reinisch
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazGrazAustria
| | - Daniel Thomas
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Angel F Lopez
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| |
Collapse
|
13
|
Xu LW, Su YZ, Tao HF. Turner syndrome with primary myelofibrosis, cirrhosis and ovarian cystic mass: A case report. World J Clin Cases 2022; 10:2931-2937. [PMID: 35434097 PMCID: PMC8968793 DOI: 10.12998/wjcc.v10.i9.2931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Turner syndrome (TS) with leukemia is a complicated clinical condition. The clinical course and outcome of these patients are poor, so the treatment and prognosis of TS with hematological malignancies deserve our attention.
CASE SUMMARY Here, we report a case of a 20-year-old woman diagnosed with TS, primary myelofibrosis (PMF), cirrhosis, and an ovarian cystic mass. This is the first report on the coexistence of TS and PMF with the MPL and SH2B3 mutations. The patient was diagnosed with cirrhosis of unknown cause, splenomegaly and severe gastroesophageal varices. Additionally, an ovarian cystic mass caused the patient to appear pregnant. The patient was treated with the JAK2 inhibitor-ruxolitinib according to peripheral blood cells, although myelofibrosis was improved, the splenomegaly did not reduce. Moreover, hematemesis and melena occasionally occurred.
CONCLUSION Ruxolitinib may clearly reduce splenomegaly. Though myelofibrosis was improved, cirrhosis and splenomegaly in this case continued to worsen. Effective treatment should be discussed.
Collapse
Affiliation(s)
- Lin-Wei Xu
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yong-Zhong Su
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hong-Fang Tao
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
14
|
Bochicchio MT, Di Battista V, Poggio P, Carrà G, Morotti A, Brancaccio M, Lucchesi A. Understanding Aberrant Signaling to Elude Therapy Escape Mechanisms in Myeloproliferative Neoplasms. Cancers (Basel) 2022; 14:cancers14040972. [PMID: 35205715 PMCID: PMC8870427 DOI: 10.3390/cancers14040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Aberrant signaling in myeloproliferative neoplasms may arise from alterations in genes coding for signal transduction proteins or epigenetic regulators. Both mutated and normal cells cooperate, altering fragile balances in bone marrow niches and fueling persistent inflammation through paracrine or systemic signals. Despite the hopes placed in targeted therapies, myeloid proliferative neoplasms remain incurable diseases in patients not eligible for stem cell transplantation. Due to the emergence of drug resistance, patient management is often very difficult in the long term. Unexpected connections among signal transduction pathways highlighted in neoplastic cells suggest new strategies to overcome neoplastic cell adaptation.
Collapse
Affiliation(s)
- Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Valeria Di Battista
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| |
Collapse
|