1
|
Mancuso K, Barbato S, Talarico M, Tacchetti P, Zamagni E, Cavo M. Idecabtagene vicleucel (ide-cel) for the treatment of triple-class exposed relapsed and refractory multiple myeloma. Expert Opin Biol Ther 2025; 25:27-46. [PMID: 39651553 DOI: 10.1080/14712598.2024.2433518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Modern anti-myeloma therapies have broken new ground in the treatment of the disease, and the incorporation of ide-cel in the treatment landscape represents one of the major scientific and clinical advances. AREAS COVERED Ide-cel was the first cell-based gene therapy approved for the treatment of triple-class exposed relapsed/refractory myeloma patients, showing impressive results, and demonstrating superiority over standard regimens in terms of efficacy, potential treatment-free intervals, and improved quality of life in heavily pretreated patients and in high-risk disease. This review summarizes the state-of-the-art of the most recent updates deriving from the use of ide-cel within ongoing, or upcoming, clinical trials, and from real-life experiences. EXPERT OPINION As the use of chimeric antigen receptor (CAR)-T therapy is likely to progressively increase over time and current indications expand to earlier treatment lines, efforts should be directed toward ameliorating overall management to facilitate proactive planning for treatment sequencing and provide adequate time for logistical planning. Importantly, the potential limited availability of CAR-T therapy highlights the importance of careful patient selection and coordination among centers. Meanwhile, attempts are underway to improve tolerance and reduce toxicity while enhancing anti-myeloma activity.
Collapse
Affiliation(s)
- Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Simona Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Marco Talarico
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol 2024; 13:102. [PMID: 39427211 PMCID: PMC11490091 DOI: 10.1186/s40164-024-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xiaohang Feng
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengxing Li
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Liu
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuolong Zhou
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Gagelmann N, Merz M. Fast and furious: Changing gears on the road to cure with chimeric antigen receptor T cells in multiple myeloma. Semin Hematol 2024; 61:306-313. [PMID: 39095225 DOI: 10.1053/j.seminhematol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Based on the pivotal KarMMa-1 and CARTITUDE-1 studies, Idecabtagene vicleucel (Ide-cel) and Ciltacabtagene autoleucel (Cilta-cel) have been approved to treat multiple myeloma patients, who have been exposed to at least 1 proteasome inhibitor, immunomodulatory drug and anti-CD38 antibody after 4 or 3 lines of therapy, respectively. The unprecedented rates of deep and long-lasting remissions have been meanwhile confirmed in multiple real-world analyses and more recently, the KarMMa-3 and CARTITUDE-4 studies lead to the approval in earlier lines of therapy. It is currently believed that ultimately all patients with relapsed/refractory multiple myeloma experience relapse after anti-BCMA CAR T-cell therapies. There is a plethora of CAR T-cell therapies targeting novel antigens, with the aim to overcome current CAR T-cell resistance. In this review, we will summarize current evidence of novel antigens and their clinical potential. Together with current CAR T-cell therapy and T-cell engagers, these approaches might lead us to the next frontier in multiple myeloma: total immunotherapy and the road to chemotherapy-free cure.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany.
| | - Maximilian Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
4
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Fischer MA, Mustafa AHM, Hausmann K, Ashry R, Kansy AG, Liebl MC, Brachetti C, Piée-Staffa A, Zessin M, Ibrahim HS, Hofmann TG, Schutkowski M, Sippl W, Krämer OH. Novel hydroxamic acid derivative induces apoptosis and constrains autophagy in leukemic cells. J Adv Res 2024; 60:201-214. [PMID: 37467961 PMCID: PMC11156613 DOI: 10.1016/j.jare.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.
Collapse
Affiliation(s)
- Marten A Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Ramy Ashry
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Egypt.
| | - Anita G Kansy
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Magdalena C Liebl
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | | | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt.
| | - Thomas G Hofmann
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Zhao J, Zheng M, Ma L, Guan T, Su L. From spear to trident: Upgrading arsenal of CAR-T cells in the treatment of multiple myeloma. Heliyon 2024; 10:e29997. [PMID: 38699030 PMCID: PMC11064441 DOI: 10.1016/j.heliyon.2024.e29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Multiple myeloma (MM), marked by abnormal proliferation of plasma cells and production of monoclonal immunoglobulin heavy or light chains in the majority of patients, has traditionally been associated with poor survival, despite improvements achieved in median survival in all age groups since the introduction of novel agents. Survival has significantly improved with the development of new drugs and new treatment options, such as chimeric antigen receptor T-cell therapy (CAR-T), which have shown promise and given new hope in MM therapy. CARs are now classified as first-, second-, and third-generation CARs based on the number of monovalent to trivalent co-stimulatory molecules incorporated into their design. The scope of this review was relatively narrow because it was mainly about a comparison of the literature on the clinical application of CAR-T therapy in MM. Thus, our goal is to provide an overview of the new advances of CAR-T cells in the cure of MM, so in this review we looked at the progress of the clinical use of CAR-T cells in MM to try to provide a reference for their clinical use when managing MM.
Collapse
Affiliation(s)
| | | | - Li Ma
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Tao Guan
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Liping Su
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| |
Collapse
|
7
|
Gagelmann N, Dima D, Merz M, Hashmi H, Ahmed N, Tovar N, Oliver-Caldés A, Stölzel F, Rathje K, Fischer L, Born P, Schäfer L, Albici AM, Schub N, Kfir-Erenfeld S, Assayag M, Asherie N, Wulf GG, Kharboutli S, Müller F, Shune L, Davis JA, Anwer F, Vucinic V, Platzbecker U, Ayuk F, Kröger N, Khouri J, Gurnari C, McGuirk J, Stepensky P, Abdallah AO, Fernández de Larrea C. Development and Validation of a Prediction Model of Outcome After B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Relapsed/Refractory Multiple Myeloma. J Clin Oncol 2024; 42:1665-1675. [PMID: 38358946 PMCID: PMC11095856 DOI: 10.1200/jco.23.02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE Although chimeric antigen receptor T therapy (CAR-T) cells are an established therapy for relapsed/refractory multiple myeloma (RRMM), there are no established models predicting outcome to identify patients who may benefit the most from CAR-T. PATIENTS AND METHODS This is an international retrospective observational study including patients with RRMM infused with currently available commercial or academically produced anti-B-cell maturation antigen (BCMA) CAR-T. We describe characteristics and outcomes in Europe (n = 136) and the United States (n = 133). Independent predictors of relapse/progression built a simple prediction model (Myeloma CAR-T Relapse [MyCARe] model) in the training cohort (Europe), which was externally validated (US cohort) and tested within patient- and treatment-specific subgroups. RESULTS The overall response rate was 87% and comparable between both cohorts, and complete responses were seen in 48% (Europe) and 49% (the United States). The median time to relapse was 5 months, and early relapse <5 months from infusion showed poor survival across cohorts, with the 12-month overall survival of 30% (Europe) and 14% (the United States). The presence of extramedullary disease or plasma cell leukemia, lenalidomide-refractoriness, high-risk cytogenetics, and increased ferritin at the time of lymphodepletion were independent predictors of early relapse or progression. Each factor received one point, forming the three-tiered MyCARe model: scores 0-1 (low risk), scores 2-3 (intermediate risk), and a score of 4 (high risk). The MyCARe model was significantly associated with distinct 5-month incidence of relapse/progression (P < .001): 7% for low-risk, 27% for intermediate-risk, and 53% for high-risk groups. The model was validated in the US cohort and maintained prognostic utility for response, survival, and outcomes across subgroups. CONCLUSION Outcomes of patients with RRMM after CAR-T are comparable between Europe and the United States. The MyCARe model may facilitate optimal timing of CAR-T cells in patient-specific subgroups.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danai Dima
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
| | - Maximilian Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Hamza Hashmi
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- Medical University of South Carolina, Charleston, SC
| | - Nausheen Ahmed
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- The University of Kansas Medical Center, Kansas City, KS
| | - Natalia Tovar
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Friedrich Stölzel
- Division for Stem Cell Transplantation and Cellular Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein Kiel, Kiel University, Kiel, Germany
| | - Kristin Rathje
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luise Fischer
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Patrick Born
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Lisa Schäfer
- Department of Hematology and Medical Oncology, Medical Center University of Göttingen, Göttingen, Germany
| | - Anca-Maria Albici
- Division for Stem Cell Transplantation and Cellular Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein Kiel, Kiel University, Kiel, Germany
| | - Natalie Schub
- Division for Stem Cell Transplantation and Cellular Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein Kiel, Kiel University, Kiel, Germany
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Asherie
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gerald Georg Wulf
- Department of Hematology and Medical Oncology, Medical Center University of Göttingen, Göttingen, Germany
| | - Soraya Kharboutli
- Department of Internal Medicine, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Leyla Shune
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- The University of Kansas Medical Center, Kansas City, KS
| | - James A. Davis
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- Medical University of South Carolina, Charleston, SC
| | - Faiz Anwer
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
| | - Vladan Vucinic
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jack Khouri
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | - Carmelo Gurnari
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Joseph McGuirk
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- The University of Kansas Medical Center, Kansas City, KS
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Al-Ola Abdallah
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, KS
- The University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
8
|
Fang J, Zhou F. BCMA-targeting chimeric antigen receptor T cell therapy for relapsed and/or refractory multiple myeloma. Ann Hematol 2024; 103:1069-1083. [PMID: 37704875 DOI: 10.1007/s00277-023-05444-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Recently, many new therapies have improved the outcomes of patients with relapsed and/or refractory multiple myeloma (RRMM). Nevertheless, recurrence is still unavoidable, and better treatment choices for RRMM are urgently needed. The clinical success of Chimera antigen receptor (CAR) T cell therapy in many hematological diseases, including leukemia and lymphoma, has drawn considerable attention to RRMM. As CAR T cell therapy continues to mature and challenge traditional therapies, it is gradually changing the treatment paradigm for MM patients. The B cell maturation antigen (BCMA), expressed in malignant plasma cells but not normal ones, is an ideal target for MM treatment, due to its high expression. The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) has approved two BCMA-targeting CAR T cell products, idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel), for use in RRMM. In this review, we focus on data from RRMM patients involved in clinical trials of Ide-cel and Cilta-cel and discuss the present situation and future direction of CAR T cell therapy for this condition.
Collapse
Affiliation(s)
- Jiamin Fang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China.
| |
Collapse
|
9
|
Konishi T, Ochi T, Maruta M, Tanimoto K, Miyazaki Y, Iwamoto C, Saitou T, Imamura T, Yasukawa M, Takenaka K. Reinforced antimyeloma therapy via dual-lymphoid activation mediated by a panel of antibodies armed with bridging-BiTE. Blood 2023; 142:1789-1805. [PMID: 37738633 DOI: 10.1182/blood.2022019082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Immunotherapy using bispecific antibodies including bispecific T-cell engager (BiTE) has the potential to enhance the efficacy of treatment for relapsed/refractory multiple myeloma. However, myeloma may still recur after treatment because of downregulation of a target antigen and/or myeloma cell heterogeneity. To strengthen immunotherapy for myeloma while overcoming its characteristics, we have newly developed a BiTE-based modality, referred to as bridging-BiTE (B-BiTE). B-BiTE was able to bind to both a human immunoglobulin G-Fc domain and the CD3 molecule. Clinically available monoclonal antibodies (mAbs) were bound with B-BiTE before administration, and the mAb/B-BiTE complex induced antitumor T-cell responses successfully while preserving and supporting natural killer cell reactivity, resulting in enhanced antimyeloma effects via dual-lymphoid activation. In contrast, any unwanted off-target immune-cell reactivity mediated by mAb/B-BiTE complexes or B-BiTE itself appeared not to be observed in vitro and in vivo. Importantly, sequential immunotherapy using 2 different mAb/B-BiTE complexes appeared to circumvent myeloma cell antigen escape, and further augmented immune responses to myeloma relative to those induced by mAb/B-BiTE monotherapy or sequential therapy with 2 mAbs in the absence of B-BiTE. Therefore, this modality facilitates easy and prompt generation of a broad panel of bispecific antibodies that can induce deep and durable antitumor responses in the presence of clinically available mAbs, supporting further advancement of reinforced immunotherapy for multiple myeloma and other refractory hematologic malignancies.
Collapse
Affiliation(s)
- Tatsuya Konishi
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Toshiki Ochi
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Immune Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Masaki Maruta
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yukihiro Miyazaki
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Chika Iwamoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masaki Yasukawa
- Division of Immune Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
10
|
Gagelmann N, Ayuk FA, Klyuchnikov E, Wolschke C, Berger SC, Kröger N. Impact of high-risk disease on the efficacy of chimeric antigen receptor T-cell therapy for multiple myeloma: a meta-analysis of 723 patients. Haematologica 2023; 108:2799-2802. [PMID: 36815380 PMCID: PMC10542827 DOI: 10.3324/haematol.2022.282510] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Francis A Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Evgeny Klyuchnikov
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Susanna Carolina Berger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg.
| |
Collapse
|
11
|
Sinclair F, Begum AA, Dai CC, Toth I, Moyle PM. Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing. Drug Deliv Transl Res 2023; 13:1500-1519. [PMID: 36988873 PMCID: PMC10052255 DOI: 10.1007/s13346-023-01320-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing system has been a major technological breakthrough that has brought revolutionary changes to genome editing for therapeutic and diagnostic purposes and precision medicine. With the advent of the CRISPR/Cas9 system, one of the critical limiting factors has been the safe and efficient delivery of this system to cells or tissues of interest. Several approaches have been investigated to find delivery systems that can attain tissue-targeted delivery, lowering the chances of off-target editing. While viral vectors have shown promise for in vitro, in vivo and ex vivo delivery of CRISPR/Cas9, their further clinical applications have been restricted due to shortcomings including limited cargo packaging capacity, difficulties with large-scale production, immunogenicity and insertional mutagenesis. Rapid progress in nonviral delivery vectors, including the use of lipid, polymer, peptides, and inorganic nanoparticle-based delivery systems, has established nonviral delivery approaches as a viable alternative to viral vectors. This review will introduce the molecular mechanisms of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Frazer Sinclair
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Anjuman A Begum
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| | - Charles C Dai
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Istvan Toth
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
12
|
Wäsch R, Strüssmann T, Wehr C, Marks R, Meyer PT, Walz G, Engelhardt M. Safe and successful CAR T-cell therapy targeting BCMA in a multiple myeloma patient requiring hemodialysis. Ann Hematol 2023; 102:1269-1270. [PMID: 36930259 PMCID: PMC10102086 DOI: 10.1007/s00277-023-05163-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| | - Tim Strüssmann
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Claudia Wehr
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Phillip T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| |
Collapse
|
13
|
Xiao X, Ma Z, Li Z, Deng Y, Zhang Y, Xiang R, Zhu L, He Y, Li H, Jiang Y, Zhu Y, Xie Y, Peng H, Liu X, Wang H, Ye M, Zhao Y, Liu J. Anti-BCMA surface engineered biomimetic photothermal nanomissile enhances multiple myeloma cell apoptosis and overcomes the disturbance of NF-κB signaling in vivo. Biomaterials 2023; 297:122096. [PMID: 37075614 DOI: 10.1016/j.biomaterials.2023.122096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/19/2023]
Abstract
Conventional chemotherapy for multiple myeloma (MM) faces the challenges of a low complete remission rate and transformation to recurrence/refractory. The current MM first-line clinical drug Bortezomib (BTZ) faces the problem of enhanced tolerance and nonnegligible side effects. B cell maturation antigen (BCMA), for its important engagement in tumor signaling pathways and novel therapy technologies such as Chimeric antigen receptor T-Cell immunotherapy (CAR-T) and Antibody Drug Conjugate (ADC), has been identified as an ideal target and attracted attention in anti-MM therapy. Emerging nanotechnology provided feasible methods for drug delivery and new therapeutic strategies such as photothermal therapy (PTT). Herein, we developed a BCMA-Targeting biomimetic photothermal nanomissile BTZ@BPQDs@EM @anti-BCMA (BBE@anti-BCMA) by integration of BTZ, black phosphorus quantum dots (BPQDs), Erythrocyte membrane (EM) and BCMA antibody (anti-BCMA). We hypothesized that this engineered nanomissile could attack tumor cells in triple ways and achieve effective treatment of MM. Consequently, the intrinsic biomimetic nature of EM and the active targeting property of anti-BCMA enhanced the accumulation of therapeutic agents in the tumor site. Besides, owing to the decrease in BCMA abundance, the potential apoptosis-inducing ability was revealed. With the support of BPQDs' photothermal effect, Cleaved-Caspase-3 and Bax signal increased significantly, and the expression of Bcl-2 was inhibited. Furthermore, the synergistic photothermal/chemo therapy can effectively inhibit tumor growth and reverse the disorder of NF-κB in vivo. Importantly, this biomimetic nanodrug delivery system and antibody induced synergistic therapeutic strategy efficiently killed MM cells with ignorable systemic toxicity, which is a promising method for the future anticancer treatment of hematological malignancies in clinics.
Collapse
|
14
|
Banerjee R, Lee SS, Cowan AJ. Innovation in BCMA CAR-T therapy: Building beyond the Model T. Front Oncol 2022; 12:1070353. [PMID: 36505779 PMCID: PMC9729952 DOI: 10.3389/fonc.2022.1070353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies targeting B-cell maturation antigen (BCMA) have revolutionized the field of multiple myeloma in the same way that the Ford Model T revolutionized the original CAR world a century ago. However, we are only beginning to understand how to improve the efficacy and usability of these cellular therapies. In this review, we explore three automotive analogies for innovation with BCMA CAR-T therapies: stronger engines, better mileage, and hassle-free delivery. Firstly, we can build stronger engines in terms of BCMA targeting: improved antigen binding, tools to modulate antigen density, and armoring to better reach the antigen itself. Secondly, we can improve "mileage" in terms of response durability through ex vivo CAR design and in vivo immune manipulation. Thirdly, we can implement hassle-free delivery through rapid manufacturing protocols and off-the-shelf products. Just as the Model T set a benchmark for car manufacturing over 100 years ago, idecabtagene vicleucel and ciltacabtagene autoleucel have now set the starting point for BCMA CAR-T therapy with their approvals. As with any emerging technology, whether automotive or cellular, the best in innovation and optimization is yet to come.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrew J. Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
15
|
Gagelmann N, Sureda A, Montoto S, Murray J, Bolaños N, Kenyon M, Beksac M, Schönland S, Hayden P, Scheurer H, Morgan K, Garderet L, McLornan DP, Ruggeri A. Access to and affordability of CAR T-cell therapy in multiple myeloma: an EBMT position paper. Lancet Haematol 2022; 9:e786-e795. [PMID: 36174641 DOI: 10.1016/s2352-3026(22)00226-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapeutic approach in the treatment of multiple myeloma, and the recent approval of the first two CAR T-cell products could result in improved outcomes. However, it remains a complex and expensive technology, which poses challenges to health-care systems and society in general, especially in times of crises. This potentially accelerates pre-existing inequalities as access to CAR T-cell therapy varies, both between countries, depending on the level of economic development, and within countries, due to structural disparities in access to quality health care-a parameter strongly correlated with socioeconomic status, ethnicity, and lifestyle. Here, we identify two important issues: affordability and access to CAR T-cell treatment. This consensus statement from clinical investigators, clinicians, nurses, and patients from the European Society for Blood and Marrow Transplantation (EBMT) proposes solutions as part of an innovative collaborative strategy to make CAR T-cell therapy accessible to all patients with multiple myeloma.
Collapse
Affiliation(s)
- Nico Gagelmann
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Anna Sureda
- Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain
| | - Silvia Montoto
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - John Murray
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Michelle Kenyon
- Department of Haematology, King's College Hospital NHS Foundation Trust, London, UK
| | - Meral Beksac
- Department of Hematology, Ankara University, Ankara, Turkey
| | - Stefan Schönland
- Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Hayden
- Department of Hematology, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | | | | | - Laurent Garderet
- Service d'Hématologie et Thérapie Cellulaire, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Donal P McLornan
- Department of Haematology and Stem Cell Transplantation, University College Hospital, London, UK
| | - Annalisa Ruggeri
- Hematology and BMT Unit, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
16
|
Deng J, Lin Y, Zhao D, Tong C, Chang AH, Chen W, Gao W. Case report: Plasma cell leukemia secondary to multiple myeloma successfully treated with anti-BCMA CAR-T cell therapy. Front Oncol 2022; 12:901266. [PMID: 36212423 PMCID: PMC9533140 DOI: 10.3389/fonc.2022.901266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy provides an effective salvage treatment for relapsed/refractory multiple myeloma (RRMM) patients. End-stage RRMM with plasma cell leukemia (PCL) transformation is highly aggressive and resistant to conventional therapy. There is an urgent need for new therapeutics and CAR-T therapy may play an important role. We report a case of PCL secondary to RRMM successfully treated with CAR-T cell therapy targeting B-cell maturation antigen (BCMA). A woman was diagnosed as having MM 4 years ago and progressed to secondary PCL (sPCL) of five prior lines of treatment including proteasome inhibitors, an immunomodulatory agent, cytotoxic drugs, and an anti-CD38 monoclonal antibody. After receiving a BCMA CAR-T therapy, she achieved a stringent complete response that lasted 9 months. Then, the patient irregularly took venetoclax 10 mg per day due to a slightly higher λ FLC concentration, which did not meet the criteria for progression. She maintained a complete response for the following 7 months. In conclusion, BCMA CAR-T therapy may be a promising therapeutic approach in PCL patients. More studies are needed to evaluate the benefit of anti-BCMA CAR-T therapy in PCL patients. Clinical Trial Registration:www.chictr.org.cn, ChiCTR1900024388, Registered 9 July 2019.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuehui Lin
- Department of Hematology, Beijing Boren Hospital, Beijing, China
| | - Defeng Zhao
- Department of Hematology, Beijing Boren Hospital, Beijing, China
| | - Chunrong Tong
- Department of Hematology, Beijing Boren Hospital, Beijing, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Wen Gao,
| |
Collapse
|
17
|
Battram AM, Oliver-Caldés A, Suárez-Lledó M, Lozano M, Bosch I Crespo M, Martínez-Cibrián N, Cid J, Moreno DF, Rodríguez-Lobato LG, Urbano-Ispizua A, Fernández de Larrea C. T cells isolated from G-CSF-treated multiple myeloma patients are suitable for the generation of BCMA-directed CAR-T cells. Mol Ther Methods Clin Dev 2022; 26:207-223. [PMID: 35859694 PMCID: PMC9271987 DOI: 10.1016/j.omtm.2022.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/16/2022] [Indexed: 10/29/2022]
Abstract
Autologous cell immunotherapy using B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells is an effective novel treatment for multiple myeloma (MM). This therapy has only been used for relapsed and refractory patients, at which stage the endogenous T cells used to produce the CAR-T cells are affected by the immunosuppressive nature of advanced MM and/or side effects of previous therapies. An alternative pool of "fitter" T cells is found in leukocytoapheresis products that are routinely collected to obtain hematopoietic progenitor cells for autologous stem cell transplantation (ASCT) early in the treatment of MM. However, to mobilize the progenitor cells, patients are dosed with granulocyte colony-stimulating factor (G-CSF), which is reported to adversely affect T cell proliferation, function, and differentiation. Here, we aimed to first establish whether G-CSF treatment negatively influences T cell phenotype and to ascertain whether previous exposure of T cells to G-CSF is deleterious for anti-BCMA CAR-T cells. We observed that G-CSF had a minimal impact on T cell phenotype when added in vitro or administered to patients. Moreover, we found that CAR-T cell fitness and anti-tumor activity were unaffected when generated from G-CSF-exposed T cells. Overall, we showed that ASCT apheresis products are a suitable source of T cells for anti-BCMA CAR-T cell manufacture.
Collapse
Affiliation(s)
- Anthony M Battram
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Aina Oliver-Caldés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Maria Suárez-Lledó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy & Hemostasis, ICMHO (Institut Clínic de Malalties Hematològiques i Oncològiques), Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Miquel Bosch I Crespo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Núria Martínez-Cibrián
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Joan Cid
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Apheresis & Cellular Therapy Unit, Department of Hemotherapy & Hemostasis, ICMHO (Institut Clínic de Malalties Hematològiques i Oncològiques), Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - David F Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.,Department of Haematology, University of Barcelona, 08036 Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain.,Department of Haematology, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
18
|
Mann H, Comenzo RL. Evaluating the Therapeutic Potential of Idecabtagene Vicleucel in the Treatment of Multiple Myeloma: Evidence to Date. Onco Targets Ther 2022; 15:799-813. [PMID: 35912273 PMCID: PMC9327779 DOI: 10.2147/ott.s305429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, significant progress has been made in the diagnosis, risk assessment and treatment of patients with multiple myeloma, translating into remarkable improvements in survival outcomes. Yet, cure remains elusive, and almost all patients eventually experience relapse, particularly those with high-risk and refractory disease. Immune-based approaches have emerged as highly effective therapeutic options that have heralded a new era in the treatment of multiple myeloma. Idecabtagene vicleucel (ide-cel) is one such therapy that employs the use of genetically modified autologous T-cells to redirect immune activation in a tumor-directed fashion. It has yielded impressive responses even in patients with poor-risk disease and is the first chimeric antigen receptor (CAR) T-cell therapy to be approved for treatment in relapsed or refractory multiple myeloma. In this review, we examine the design and pharmacokinetics of ide-cel, audit evidence that led to its incorporation into the current treatment paradigm and provide insight into its clinical utilization with a focus on real-life intricacies.
Collapse
Affiliation(s)
- Hashim Mann
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| | - Raymond L Comenzo
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther 2022; 29:475-483. [PMID: 34471234 DOI: 10.1038/s41417-021-00365-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 02/02/2023]
Abstract
The highly restricted expression of B-cell maturation antigen (BCMA) on plasma cells makes it an ideal target for chimeric antigen receptor (CAR) immune cell therapy against multiple myeloma (MM), a bone marrow cancer. To improve the infiltration of ex vivo expanded human natural killer (NK) cells into the bone marrow, we electroporated these cells with mRNA encoding the chemokine receptor CXCR4. The CXCR4-modified NK cells displayed increased in vitro migration toward the bone marrow niche-expressing chemokine CXCL12/SDF-1α and augmented infiltration into the bone marrow compartments in mice. We further modified the CXCR4-NK cells by electroporation of mRNA encoding a CAR targeting BCMA. After the intravenous injection of the double-modified NK cells into a xenograft mouse model of MM, we observed significantly reduced tumor burden in the femur region of the living mice and the extended survival of the tumor-bearing mice. Collectively, this study provides the experimental evidence that the co-expression of CXCR4 and anti-BCMA CAR on NK cells is a possible effective way to control MM progression.
Collapse
|
20
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Reichman A, Kunz A, Joedicke JJ, Höpken UE, Keib A, Neuber B, Sedloev D, Wang L, Jiang G, Hückelhoven-Krauss A, Eberhardt F, Müller-Tidow C, Wermke M, Rehm A, Schmitt M, Schmitt A. Comparison of FACS and PCR for Detection of BCMA-CAR-T Cells. Int J Mol Sci 2022; 23:ijms23020903. [PMID: 35055086 PMCID: PMC8777942 DOI: 10.3390/ijms23020903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chimeric-antigen-receptor (CAR)-T-cell therapy is already widely used to treat patients who are relapsed or refractory to chemotherapy, antibodies, or stem-cell transplantation. Multiple myeloma still constitutes an incurable disease. CAR-T-cell therapy that targets BCMA (B-cell maturation antigen) is currently revolutionizing the treatment of those patients. To monitor and improve treatment outcomes, methods to detect CAR-T cells in human peripheral blood are highly desirable. In this study, three different detection reagents for staining BCMA-CAR-T cells by flow cytometry were compared. Moreover, a quantitative polymerase chain reaction (qPCR) to detect BCMA-CAR-T cells was established. By applying a cell-titration experiment of BCMA-CAR-T cells, both methods were compared head-to-head. In flow-cytometric analysis, the detection reagents used in this study could all detect BCMA-CAR-T cells at a similar level. The results of false-positive background staining differed as follows (standard deviation): the BCMA-detection reagent used on the control revealed a background staining of 0.04% (±0.02%), for the PE-labeled human BCMA peptide it was 0.25% (±0.06%) and for the polyclonal anti-human IgG antibody it was 7.2% (±9.2%). The ability to detect BCMA-CAR-T cells down to a concentration of 0.4% was similar for qPCR and flow cytometry. The qPCR could detect even lower concentrations (0.02–0.01%). In summary, BCMA-CAR-T-cell monitoring can be reliably performed by both flow cytometry and qPCR. In flow cytometry, reagents with low background staining should be preferred.
Collapse
Affiliation(s)
- Avinoam Reichman
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Alexander Kunz
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Jara J. Joedicke
- Department of Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; (J.J.J.); (A.R.)
| | - Uta E. Höpken
- Department of Translational Tumor Immunology, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany;
| | - Anna Keib
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Brigitte Neuber
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - David Sedloev
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Lei Wang
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Genqiao Jiang
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Franziska Eberhardt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Martin Wermke
- NCT/UCC Early Clinical Trial Unit (ECTU), Medical Faculty C.-G. Carus, Technical University Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Armin Rehm
- Department of Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; (J.J.J.); (A.R.)
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
| | - Anita Schmitt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.R.); (A.K.); (A.K.); (B.N.); (D.S.); (L.W.); (G.J.); (A.H.-K.); (F.E.); (C.M.-T.); (M.S.)
- Correspondence: ; Tel.: +49-6221-56-6614; Fax: +49-6221-56-5740
| |
Collapse
|
22
|
Allogeneic Stem Cell Transplantation in Multiple Myeloma. Cancers (Basel) 2021; 14:cancers14010055. [PMID: 35008228 PMCID: PMC8750583 DOI: 10.3390/cancers14010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
The development of new inhibitory and immunological agents and combination therapies significantly improved response rates and survival of patients diagnosed with multiple myeloma (MM) in the last decade, but the disease is still considered to be incurable by current standards and the prognosis is dismal especially in high-risk groups and in relapsed and/or refractory patients. Allogeneic hematopoietic stem cell transplantation (allo-SCT) may enable long-term survival and even cure for individual patients via an immune-mediated graft-versus-myeloma (GvM) effect, but remains controversial due to relevant transplant-related risks, particularly immunosuppression and graft-versus-host disease, and a substantial non-relapse mortality. The decreased risk of disease progression may outweigh this treatment-related toxicity for young, fit patients in high-risk constellations with otherwise often poor long-term prognosis. Here, allo-SCT should be considered within clinical trials in first-line as part of a tandem approach to separate myeloablation achieved by high-dose chemotherapy with autologous SCT, and following allo-SCT with a reduced-intensity conditioning to minimize treatment-related organ toxicities but allow GvM effect. Our review aims to better define the role of allo-SCT in myeloma treatment particularly in the context of new immunomodulatory approaches.
Collapse
|
23
|
Gengenbach L, Graziani G, Reinhardt H, Rösner A, Braun M, Möller MD, Greil C, Wäsch R, Engelhardt M. Choosing the Right Therapy for Patients with Relapsed/Refractory Multiple Myeloma (RRMM) in Consideration of Patient-, Disease- and Treatment-Related Factors. Cancers (Basel) 2021; 13:4320. [PMID: 34503130 PMCID: PMC8430818 DOI: 10.3390/cancers13174320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023] Open
Abstract
Treatment of relapsed/refractory multiple myeloma (RRMM) is more complex today due to the availability of novel therapeutic options, mostly applied as combination regimens. immunotherapy options have especially increased substantially, likewise the understanding that patient-, disease- and treatment-related factors should be considered at all stages of the disease. RRMM is based on definitions of the international myeloma working group (IMWG) and includes biochemical progression, such as paraprotein increase, or symptomatic relapse with CRAB criteria (hypercalcemia, renal impairment, anemia, bone lesions). When choosing RRMM-treatment, the biochemical markers for progression and severity of the disease, dynamic of disease relapse, type and number of prior therapy lines, including toxicity and underlying health status, need to be considered, and shared decision making should be pursued. Objectively characterizing health status via geriatric assessment (GA) at each multiple myeloma (MM) treatment decision point has been shown to be a better estimate than via age and comorbidities alone. The well-established national comprehensive cancer network, IMWG, European myeloma network and other national treatment algorithms consider these issues. Ideally, GA-based clinical trials should be supported in the future to choose wisely and efficaciously from available intervention and treatment options in often-older MM adults in order to further improve morbidity and mortality.
Collapse
|
24
|
Ke M, Kang L, Wang L, Yang S, Wang Y, Liu H, Gu C, Huang H, Yang Y. CAR-T therapy alters synthesis of platelet-activating factor in multiple myeloma patients. J Hematol Oncol 2021; 14:90. [PMID: 34108020 PMCID: PMC8191024 DOI: 10.1186/s13045-021-01101-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
The chimera antigen receptor (CAR) T cell therapy is a novel and potential targeted therapy and has achieved satisfactory efficacy in patients with relapsed or refractory multiple myeloma (MM) in recent years. However, cytokine release syndrome (CRS) and clinical efficacy have become the major obstacles which limit the application of CAR-T in clinics. To explore the potential biomarkers in plasma for evaluating CRS and clinical efficacy, we performed metabolomic and lipidomic profiling of plasma samples from 17 relapsed or refractory MM patients received CAR-T therapy. Our study showed that glycerophosphocholine (GPC), an intermediate of platelet-activating factor (PAF)-like molecule, was significantly decreased when the participants underwent CRS, and the remarkable elevation of lysophosphatidylcholines (lysoPCs), which were catalyzed by lysoPC acyltransferase (LPCAT) was a distinct metabolism signature of relapsed or refractory MM patients with prognostic value post-CAR-T therapy. Both GPC and lysoPC are involved in platelet-activating factor (PAF) remodeling pathway. Besides, these findings were validated by LPCAT1 expression, a key factor in the PAF pathway, associated with poor outcome in three MM GEP datasets of MM. In conclusion, CAR-T therapy alters PAF synthesis in MM patients, and targeting PAF remodeling may be a promising strategy to enhance MM CAR-T therapy.
Collapse
Affiliation(s)
- Mengying Ke
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-Medicine Technology Co., Ltd, Shanghai, China
| | - Ling Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Shu Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yajun Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Haiyan Liu
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|