1
|
Pamuk GE, Ehrlich LA. An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers (Basel) 2024; 16:3615. [PMID: 39518058 PMCID: PMC11545322 DOI: 10.3390/cancers16213615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Myeloid blast-phase chronic myeloid leukemia (MBP-CML) is a rare disease with a dismal prognosis. It is twice as common as lymphoid blast-phase CML, and its prognosis is poorer. Despite the success with tyrosine kinase inhibitors in the treatment of chronic-phase CML, the same does not hold true for MBP-CML. In addition to the Philadelphia chromosome, other chromosomal and molecular changes characterize rapid progression. Although some progress in elucidating the biology of MBP-CML has been made, there is need to discover more in order to develop more satisfactory treatment options. Currently, most common treatment options include tyrosine kinase inhibitors (TKIs) as monotherapy or in combination with acute myeloid leukemia-based intensive chemotherapy regimens. Some patients may develop resistance to TKIs via BCR-ABL1-dependent or BCR-ABL1-independent mechanisms. In this paper, we provide an overview of the biology of MBP-CML, the current treatment approaches, and mechanisms of resistance to TKIs. In order to improve treatment responses in these patients, more emphasis should be placed on understanding the biology of myeloid blastic transformation in CML and mechanisms of resistance to TKIs. Although patient numbers are small, randomized clinical trials should be considered.
Collapse
Affiliation(s)
- Gulsum E. Pamuk
- Office of Oncologic Diseases, Center for Drug Evaluation and Research—CDER, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
| | | |
Collapse
|
2
|
Krumbholz M, Dolnik A, Sträng E, Ghete T, Skambraks S, Hutter S, Simonis A, Stegelmann F, Suttorp M, Horn AHC, Sticht H, Haferlach T, Bullinger L, Metzler M. A high proportion of germline variants in pediatric chronic myeloid leukemia. Mol Cancer 2024; 23:206. [PMID: 39327604 PMCID: PMC11426096 DOI: 10.1186/s12943-024-02109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic myeloid leukemia (CML) typically occurs in late adulthood. Pediatric CML is a rare form of leukemia. In all age groups, the characteristic genetic driver of the disease is the BCR::ABL1 fusion gene. However, additional genomic events contribute to leukemic transformation, which is not yet well-characterized in pediatric CML. We investigated the mutational landscape of pediatric CML to determine whether predisposing germline variants may play a role in early-age disease development. Whole exome sequencing and targeted sequencing were performed in pediatric and adult CML samples to identify age-related germline and somatic variants in addition to the BCR::ABL1 translocation. Germline variants were detected in about 60% of pediatric patients with CML, with predominantly hematopoietic genes affected, most frequently ASXL1, NOTCH1, KDM6B, and TET2. The number of germline variants was significantly lower in adult patients with CML. If only confirmed pathogenic variants were regarded as cancer-predisposing variants, the occurrence was ~ 10% of pediatric CML, which is comparable to other hematological malignancies and most childhood cancer entities in general. We hypothesize that the interaction with the strong oncogene BCR::ABL1 may also favor the development of leukemia by weaker variants in the same genes. In pediatric patients, the germline variants of genes associated with clonal hematopoiesis may increase the likelihood that an incidental BCR::ABL1 translocation triggers the early manifestation of CML.
Collapse
Affiliation(s)
- Manuela Krumbholz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Eric Sträng
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Tabita Ghete
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Sabrina Skambraks
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | | | - Alfred Simonis
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Frank Stegelmann
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Meinolf Suttorp
- Medical Faculty, Pediatric Hematology and Oncology, Technical University, Dresden, Germany
| | - Anselm H C Horn
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander- Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | | | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Berlin, Germany
- Corporate member of Freie Universität Berlin and Humboldt, partner site Berlin, Universitätsmedizin Berlin, Universität zu Berlin, German Cancer Consortium (DKTK), Berlin, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
3
|
Wang L, Chen Y, Wang Q, Xiang M, Zeng Z, Zhang Z, Zhang F, Chen S, Xue M. Identification and clinical implications of recurrent PAX5::MLLT3 fusion in lymphoid blastic phase chronic myeloid leukemia. Int J Lab Hematol 2024; 46:571-574. [PMID: 38389449 DOI: 10.1111/ijlh.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Lijun Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Xiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengxing Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Perusini MA, Žáčková D, Kim T, Pagnano K, Pavlovsky C, Ježíšková I, Kvetková A, Jurček T, Kim J, Yoo Y, Yi S, Lee H, Kim KH, Chang M, Capo-Chichi JM, Medeiros JJF, Arruda A, Minden M, Zhang Z, Abelson S, Mayer J, Hwan Kim DD. Mutations in myeloid transcription factors and activated signaling genes predict chronic myeloid leukemia outcomes. Blood Adv 2024; 8:2361-2372. [PMID: 38447114 PMCID: PMC11127220 DOI: 10.1182/bloodadvances.2023012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Advancements in genomics are transforming the clinical management of chronic myeloid leukemia (CML) toward precision medicine. The impact of somatic mutations on treatment outcomes is still under debate. We studied the association of somatic mutations in epigenetic modifier genes and activated signaling/myeloid transcription factors (AS/MTFs) with disease progression and treatment failure in patients with CML after tyrosine kinase inhibitor (TKI) therapy. A total of 394 CML samples were sequenced, including 254 samples collected at initial diagnosis and 140 samples taken during follow-up. Single-molecule molecular inversion probe (smMIP)-based next-generation sequencing (NGS) was conducted targeting recurrently mutated loci in 40 genes, with a limit of detection of 0.2%. Seventy mutations were detected in 57 diagnostic samples (22.4%), whereas 64 mutations were detected in 39 of the follow-up samples (27.9%). Carrying any mutation at initial diagnosis was associated with worse outcomes after TKI therapy, particularly in AS/MTF genes. Patients having these mutations at initial diagnosis and treated with imatinib showed higher risks of treatment failure (hazard ratio, 2.53; 95% confidence interval, 1.13-5.66; P = .0239). The adverse prognostic impact of the mutations was not clear for patients treated with second-generation TKIs. The multivariate analysis affirmed that mutations in AS/MTF genes independently serve as adverse prognostic factors for molecular response, failure-free survival, and progression risk. Additionally, there was an observable nonsignificant trend indicating a heightened risk of progression to advanced disease and worse overall survival. In conclusion, mutations in the AS/MTF genes using smMIP-based NGS can help identify patients with a potential risk of both treatment failure and progression and may help upfront TKI selection.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Mutation
- Male
- Middle Aged
- Female
- Adult
- Aged
- Signal Transduction
- Protein Kinase Inhibitors/therapeutic use
- Prognosis
- Transcription Factors/genetics
- Treatment Outcome
- High-Throughput Nucleotide Sequencing
- Young Adult
- Aged, 80 and over
- Disease Progression
Collapse
Affiliation(s)
- Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniela Žáčková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Taehyung Kim
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Katia Pagnano
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | - Ivana Ježíšková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Anežka Kvetková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tomáš Jurček
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jaeyoon Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Youngseok Yoo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Seongyoon Yi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Republic of Korea
| | - Hyewon Lee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Center for Hematologic Malignancies, National Cancer Center, Goyang, Republic of Korea
| | - Kyoung Ha Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Hematology and Oncology, Department of Internal Medicine, Soon Chun Hyang University Seoul Hospital, Seoul, Republic of Korea
| | - Myunghee Chang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- National Health Insurance Service Ilsan Hospital, Ilsan, Republic of Korea
| | - Jose-Mario Capo-Chichi
- Genome Diagnostics & Cancer Cytogenetics Laboratories, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jessie J. F. Medeiros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Tian J, Song YP, Zhang GC, Wang SF, Chu XX, Chai Y, Wang CL, He AL, Zhang F, Shen XL, Zhang WH, Yang LH, Nie DN, Wang DM, Zhu HL, Gao D, Lou SF, Zhou ZP, Su GH, Li Y, Lin JY, Shi QZ, Ouyang GF, Jing HM, Chen SJ, Li J, Mi JQ. Oral arsenic plus imatinib versus imatinib solely for newly diagnosed chronic myeloid leukemia: a randomized phase 3 trial with 5-year outcomes. J Cancer Res Clin Oncol 2024; 150:189. [PMID: 38605258 PMCID: PMC11009770 DOI: 10.1007/s00432-024-05700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE The synergistic effects of combining arsenic compounds with imatinib against chronic myeloid leukemia (CML) have been established using in vitro data. We conducted a clinical trial to compare the efficacy of the arsenic realgar-indigo naturalis formula (RIF) plus imatinib with that of imatinib monotherapy in patients with newly diagnosed chronic phase CML (CP-CML). METHODS In this multicenter, randomized, double-blind, phase 3 trial, 191 outpatients with newly diagnosed CP-CML were randomly assigned to receive oral RIF plus imatinib (n = 96) or placebo plus imatinib (n = 95). The primary end point was the major molecular response (MMR) at 6 months. Secondary end points include molecular response 4 (MR4), molecular response 4.5 (MR4.5), progression-free survival (PFS), overall survival (OS), and adverse events. RESULTS The median follow-up duration was 51 months. Due to the COVID-19 pandemic, the recruitment to this study had to be terminated early, on May 28, 2020. The rates of MMR had no significant statistical difference between combination and imatinib arms at 6 months and any other time during the trial. MR4 rates were similar in both arms. However, the 12-month cumulative rates of MR4.5 in the combination and imatinib arms were 20.8% and 10.5%, respectively (p = 0.043). In core treatment since the 2-year analysis, the frequency of MR4.5 was 55.6% in the combination arm and 38.6% in the imatinib arm (p = 0.063). PFS and OS were similar at five years. The safety profiles were similar and serious adverse events were uncommon in both groups. CONCLUSION The results of imatinib plus RIF as a first-line treatment of CP-CML compared with imatinib might be more effective for achieving a deeper molecular response (Chinadrugtrials number, CTR20170221).
Collapse
Affiliation(s)
- Jie Tian
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Ping Song
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | - Ye Chai
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chun-Ling Wang
- The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Ai-Li He
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xu-Liang Shen
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wei-Hua Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin-Hua Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Da-Nian Nie
- The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Huan-Ling Zhu
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Da Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi-Feng Lou
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Ping Zhou
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guo-Hong Su
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yan Li
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin-Ying Lin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qing-Zhi Shi
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Senapati J, Jabbour E, Kantarjian H, Short NJ. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023; 37:5-17. [PMID: 36309558 DOI: 10.1038/s41375-022-01736-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
The treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs) has been a model for cancer therapy development. Though most patients with CML have a normal quality and duration of life with TKI therapy, some patients progress to accelerated phase (AP) and blast phase (BP), both of which have a relatively poor prognosis. The rates of progression have reduced significantly from over >20% in the pre-TKI era to <5% now, largely due to refinements in CML therapy and response monitoring. Significant insights have been gained into the mechanisms of disease transformation including the role of additional cytogenetic abnormalities, somatic mutations, and other genomic alterations present at diagnosis or evolving on therapy. This knowledge is helping to optimize TKI therapy, improve prognostication and inform the development of novel combination regimens in these patients. While patients with de novo CML-AP have outcomes almost similar to CML in chronic phase (CP), those transformed from previously treated CML-CP should receive second- or third- generation TKIs and be strongly considered for allogeneic stem cell transplantation (allo-SCT). Similarly, patients with transformed CML-BP have particularly dismal outcomes with a median survival usually less than one year. Combination regimens with a potent TKI such as ponatinib followed by allo-SCT can achieve long-term survival in some transformed BP patients. Regimens including venetoclax in myeloid BP or inotuzumab ozogamicin or blinatumomab in lymphoid BP might lead to deeper and longer responses, facilitating potentially curative allo-SCT for patients with CML-BP once CP is achieved. Newer agents and novel combination therapies are further expanding the therapeutic arsenal in advanced phase CML.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Shahrin NH, Wadham C, Branford S. Defining Higher-Risk Chronic Myeloid Leukemia: Risk Scores, Genomic Landscape, and Prognostication. Curr Hematol Malig Rep 2022; 17:171-180. [PMID: 35932396 PMCID: PMC9712352 DOI: 10.1007/s11899-022-00668-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The chronic myeloid leukemia (CML) treatment success story is incomplete as some patients still fail therapy, leading to end-stage disease and death. Here we discuss recent research into CML incidence, the role of comorbidities on survival and detecting patients at risk of failing therapy. RECENT FINDINGS The incidence of CML has fallen markedly in high social-demographic index (SDI) regions of the world but there is disturbing evidence that this is not the case in low and low-middle SDI countries. Now that CML patients more frequently die from their co-morbid conditions than from CML the Adult Comorbidity Evaluation-27 score can assist in risk assessment at diagnosis. Non-adherence to therapy contributes greatly to treatment failure. A good doctor-patient relationship and social support promote good adherence, but patient age, gender, and financial burden have negative effects, suggesting avenues for intervention. Mutations in cancer-associated genes adversely affect outcome and their detection at diagnosis may guide therapeutic choice and offer non-BCR::ABL1 targeted therapies. A differential gene expression signature to assist risk detection is a highly sought-after diagnostic tool being actively researched on several fronts. Detecting patients at risk of failing therapy is being assisted by recent technological advances enabling highly sensitive genomic and expression analysis of insensitive cells. However, patient lifestyle, adherence to therapy, and comorbidities are critical risk factors that need to be addressed by interventions such as social and financial support.
Collapse
MESH Headings
- Adult
- Humans
- Fusion Proteins, bcr-abl/genetics
- Physician-Patient Relations
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Genomics
- Risk Factors
Collapse
Affiliation(s)
- Nur Hezrin Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia 2022; 36:2443-2452. [PMID: 35999259 DOI: 10.1038/s41375-022-01680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-naïve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-naïve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly, incorporation of NL-CFC output in these panels enhanced predictive performance. Thus, this novel predictive model may be developed into a prognostic tool for use in the clinic.
Collapse
|
9
|
The association of genetic alterations with response rate in newly diagnosed chronic myeloid leukemia patients. Leuk Res 2022; 114:106791. [DOI: 10.1016/j.leukres.2022.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
|