1
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
2
|
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA, Gouda SAA. Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch 2024; 476:1155-1168. [PMID: 38740599 PMCID: PMC11166745 DOI: 10.1007/s00424-024-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflammation, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a useful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin-MSCs). We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thickening. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt.
| | - Sabreen Sayed Elnassag
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Dina Hisham Mohamed
- Department of Histology, Faculty of Medicine, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Olfat Shaker
- Department of Biochemistry, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Effat A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| |
Collapse
|
3
|
The Role of CD40, CD86, and Glutathione S-Transferase Omega 1 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Can Respir J 2022; 2022:6810745. [PMID: 36051533 PMCID: PMC9427324 DOI: 10.1155/2022/6810745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. The aim of the study was to explore the relevance of CD40, CD86, and GSTO1 with the pathogenesis of COPD. Methods. Patients with acute exacerbation of COPD were contrasted with the healthy and nonsmoking ones and smoking but without COPD ones. The changes of CD40, CD86, and GSTO1 in the peripheral blood, collected from different groups, were detected by flow cytometry and western blotting, respectively. Results. Compared with the nonsmoking group and smoking but without the COPD group, the expression of CD40 and CD86 of the patients with COPD increased significantly, but the expression of GSTO1 decreased. CD40 and CD86 were negatively correlated with FEV1%, while GSTO1 was positively correlated with FEV1% and negatively correlated with CD40 and CD86. Conclusion. CD40, CD86, and GSTO1 may play a role in the pathogenesis of COPD, and they are related to the severity of COPD and the degree of changes in the lung function.
Collapse
|
4
|
Liao SX, Chen J, Zhang LY, Zhang J, Sun PP, Ou-Yang Y. Effects of SOCS1-overexpressing dendritic cells on Th17- and Treg-related cytokines in COPD mice. BMC Pulm Med 2022; 22:145. [PMID: 35428280 PMCID: PMC9012034 DOI: 10.1186/s12890-022-01931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background In this study, we established a chronic obstructive pulmonary disease (COPD) model by stimulating mice with cigarette smoke, and observed the effects of dendritic cells (DCs) overexpressing SOCS1 on Th17, Treg and other related cytokines in peripheral blood, bronchoalveolar lavage fluid and lung tissues of COPD mice. Methods After successfully transfecting DCs with overexpressing SOCS1 (DC-SOCS1), the mice were injected with DC-SOCS1 (1 × 106), DC-SOCS1 (2 × 106) and immature DCs (1 × 106) via tail vein on days 1 and 7 of COPD fumigation modeling. After day 28 of modeling, the peripheral blood, BALF and lung tissue samples were extracted from the mice, and the changes of DCs, Th17 and Treg cells and related cytokines were detected by immunohistochemistry, immunofluorescence, HE staining, flow cytometry and ELISA. Results The results showed that DC-SOCS1 was able to reduce the secretion of pro-inflammatory factors and increase the anti-inflammatory factors in the COPD mice, and the effect of high concentration (2 × 106 DC-SOCS1) was better than low concentration (1 × 106 DC-SOCS1). Moreover, the intervention effect was significant on day 1 compared with day 7. In the mice injected with DC-SOCS1, the expression of CD83, IL-4, Foxp3, and CCR6 was increased on day 1 than those on day 7, while IL-17 and IFN-γ was decreased. Conclusions Intervention of COPD mice with high concentrations of DCs-SOCS1 reduced pro-inflammatory factor secretion and attenuated the inflammatory response in COPD. Trial registration Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01931-1.
Collapse
|
5
|
Zhu D, Ma N, Chen L, Huang J, Zhong X. Verification of the role of spiperone in the treatment of COPD through bioinformatics analysis. Int Immunopharmacol 2021; 101:108308. [PMID: 34741870 DOI: 10.1016/j.intimp.2021.108308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aim of this study is investigates the influence of spiperone on hydrolase activity pathway in chronic obstructive pulmonary disease (COPD). PATIENTS AND METHODS Differentially expressed genes (DEGs) were calculated by the limma package from microarray data GSE20257, and analysed via gene set enrichment analysis (GSEA) for identifying COPD related pathways. The regulation of hydrolase activity pathway related drugs was predicted by connectivity Map analysis (CMap). Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to investigate the effect of spiperone on regulation of hydrolase activity pathway in vitro experiment. RESULTS A total of 378 DEGs were identified by the limma package. GSEA suggested that the regulation of hydrolase activity pathway was involved in the development of COPD. CMap of hub genes of regulation of hydrolase activity pathwayshown the most significant compound was spiperone. Results of vitro experiment verify that cigarette smoke extract (CSE) can increase the expression of fibronectin 1 (FN1) and epidermal growth factor (EGF), coinsided with decrease the expression of chemokine (C-X3-C motif) ligand 1 (CX3CL1), chemokoine (C-C motif) ligand 20 (CCL20), complement component 3 (C3) and slithomolog 2 (SLIT2) in BESA-2B cells and U937 cells. Spiperone can reverse the effect of CSE in BESA-2B cells and U937 cells. CONCLUSION Regulation of hydrolase activity pathway was involved in the occurrence of COPD, spiperone was a potential drug for the treatment of COPD by affecting the regulation of hydrolase activity pathway. This study had provided new insights into the potential pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Donglan Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Nan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Lin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jinfu Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Korytina GF, Aznabaeva YG, Akhmadishina LZ, Kochetova OV, Nasibullin TR, Zagidullin NS, Zagidullin SZ, Viktorova TV. The Relationship Between Chemokine and Chemokine Receptor Genes Polymorphisms and Chronic Obstructive Pulmonary Disease Susceptibility in Tatar Population from Russia: A Case Control Study. Biochem Genet 2021; 60:54-79. [PMID: 34091786 DOI: 10.1007/s10528-021-10087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease affecting primarily distal respiratory pathways and lung parenchyma. This study aimed to determine possible genetic association of chemokine and chemokine receptor genes polymorphisms with COPD in a Tatar population from Russia. SNPs of CCL20, CCR6, CXCL8, CXCR1, CXCR2, CCL8, CCL23, CCR2, and CX3CL1 genes and their gene-gene interactions were analyzed for association with COPD in cohort of 601 patients and 617 controls. As a result statistically significant associations with COPD in the study group under the biologically plausible assumption of additive genetic model were identified in CCL20 (rs6749704) (P = 0.00001, OR 1.55), CCR6 (rs3093024) (P = 0.0003, OR 0.74), CCL8 (rs3138035) (P = 0.0001, OR 0.67), CX3CL1 (rs170364) (P = 0.023, OR 1.21), CXCL8 (rs4073) (P = 0.007, OR 1.23), CXCR2 (rs2230054) (P = 0.0002, OR 1.32). Following SNPs CCL20 (rs6749704), CX3CL1 (rs170364), CCL8 (rs3138035), CXCL8 (rs4073), CXCR2 (rs2230054) showed statistically significant association with COPD only in smokers. The association of CCR6 (rs3093024) with COPD was confirmed both in smokers and in non-smokers. A relationship between smoking index and CCL20 (rs6749704) (P = 0.04), CCR6 (rs3093024) (P = 0.007), CCL8 (rs3138035) (P = 0.0043), and CX3CL1 (rs170364) (P = 0.04) was revealed. A significant genotype-dependent variation of Forced Vital Capacity was observed for CCL23 (rs854655) (P = 0.04). Forced Expiratory Volume in 1 s / Forced Vital Capacity ratio was affected by CCL23 (rs854655) (P = 0.05) and CXCR2 (rs1126579) (P = 0.02). Using the APSampler algorithm, we obtained nine gene-gene combinations that remained significantly associated with COPD; loci CCR2 (rs1799864) and CCL8 (rs3138035) were involved in the largest number of the combinations. Our results indicate that CCL20 (rs6749704), CCR6 (rs3093024), CCR2 (rs1799864), CCL8 (rs3138035), CXCL8 (rs4073), CXCR1 (rs2234671), CXCR2 (rs2230054), and CX3CL1 (rs170364) polymorphisms are strongly associated with COPD in Tatar population from Russia, alone and in combinations. For the first time combination of the corresponding SNPs were considered and as a result 8 SNP patterns were associated with increased risk of COPD.
Collapse
Affiliation(s)
- Gulnaz F Korytina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation. .,Department of Biology, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation.
| | - Yulia G Aznabaeva
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Leysan Z Akhmadishina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Olga V Kochetova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Naufal Sh Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Shamil Z Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Tatyana V Viktorova
- Department of Biology, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| |
Collapse
|
7
|
Sun D, Ding D, Li Q, Xie M, Xu Y, Liu X. The preventive and therapeutic effects of AAV1-KLF4-shRNA in cigarette smoke-induced pulmonary hypertension. J Cell Mol Med 2021; 25:1238-1251. [PMID: 33342082 PMCID: PMC7812256 DOI: 10.1111/jcmm.16194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
We found previously that KLF4 expression was up-regulated in cultured rat and human pulmonary artery smooth muscle cells (PASMCs) exposed to cigarette smoke (CS) extract and in pulmonary artery from rats with pulmonary hypertension induced by CS. Here, we aim to investigate whether CS-induced pulmonary hypertension (PH) is prevented and ameliorated by targeted pulmonary vascular gene knockdown of KLF4 via adeno-associated virus 1 (AAV1)-KLF4-shRNA in vivo in rat model. The preventive and therapeutic effects were observed according to the different time-point of AAV1-KLF4-shRNA intratracheal administration. We tested haemodynamic measurements of systemic and pulmonary circulations and observed the degree of pulmonary vascular remodelling. In the preventive experiment, KLF4 expression and some pulmonary circulation hemodynamic measurements such as right ventricular systolic pressure (RVSP), mean right ventricular pressure (mRVP), peak RV pressure rate of rise (dP/dt max) and right ventricle (RV) contractility index were increased significantly in the CS-induced PH model. While in the prevention group (AAV1-KLF4-shRNA group), RVSP, mRVP, dP/dt max and RV contractility index which are associated with systolic function of right ventricle decreased and the degree of pulmonary vascular remodelling relieved. In the therapeutic experiment, we observed a similar trend. Our findings emphasize the feasibility of sustained pulmonary vascular KLF4 gene knockdown using intratracheal delivery of AAV1 in an animal model of cigarette smoke-induced PH and determined gene transfer of KLF4-shRNA could prevent and ameliorate the progression of PH.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - DanDan Ding
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinghai Li
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Min Xie
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongjian Xu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiansheng Liu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Sun D, Liu H, Ouyang Y, Liu X, Xu Y. Serum Levels of Gamma-Glutamyltransferase During Stable and Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Med Sci Monit 2020; 26:e927771. [PMID: 33087693 PMCID: PMC7590526 DOI: 10.12659/msm.927771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important factors in the pathogenesis of COPD (chronic obstructive pulmonary disease) is oxidative stress. GGT (gamma-glutamyltransferase) has been regarded as a novel marker of oxidative stress over the last few years. This study aimed to compare the serum levels of GGT during stable and acute exacerbations of COPD at a single center. Material/Methods The research included 117 patients with AECOPD (acute exacerbation of chronic obstructive pulmonary disease), 107 patients with stable COPD, and 112 control subjects. Serum GGT, spirometry function, and other clinical parameters (anthropometric and biochemical measurements) were evaluated and compared among the subjects. Results Serum GGT was elevated in patients with stable COPD in comparison to the control subjects. Its level was inversely related to lung function. It was also significantly higher in AECOPD patients compared to stable COPD patients. We also found that a GGT level of 21.2 IU/L displays a reliable diagnostic prediction of COPD and that a GGT level of 26.5 IU/L can be applied to predict the exacerbation of COPD. Conclusions Our research demonstrates that serum GGT level is inversely associated with pulmonary function and may serve as a biomarker during the progression of COPD. The monitoring of GGT values can be applied to evaluating COPD and its exacerbation risk.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland).,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hongyan Liu
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Yao Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
9
|
Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, Acovic A, Djonov V, Arsenijevic N, Volarevic V. Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-Derived Product "Exo-d-MAPPS" in Attenuation of Chronic Airway Inflammation. Anal Cell Pathol (Amst) 2020; 2020:3153891. [PMID: 32257769 PMCID: PMC7109559 DOI: 10.1155/2020/3153891] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), due to their potential for differentiation into alveolar epithelial cells and their immunosuppressive characteristics, are considered a new therapeutic agent in cell-based therapy of inflammatory lung disorders, including chronic obstructive pulmonary disease (COPD). Since most of the MSC-mediated beneficent effects were the consequence of their paracrine action, herewith, we investigated the effects of a newly designed MSC-derived product "Exosome-derived Multiple Allogeneic Protein Paracrine Signaling (Exo-d-MAPPS)" in the attenuation of chronic airway inflammation by using an animal model of COPD (induced by chronic exposure to cigarette smoke (CS)) and clinical data obtained from Exo-d-MAPPS-treated COPD patients. Exo-d-MAPPS contains a high concentration of immunomodulatory factors which are capable of attenuating chronic airway inflammation, including soluble TNF receptors I and II, IL-1 receptor antagonist, and soluble receptor for advanced glycation end products. Accordingly, Exo-d-MAPPS significantly improved respiratory function, downregulated serum levels of inflammatory cytokines (TNF-α, IL-1β, IL-12, and IFN-γ), increased serum concentration of immunosuppressive IL-10, and attenuated chronic airway inflammation in CS-exposed mice. The cellular makeup of the lungs revealed that Exo-d-MAPPS treatment attenuated the production of inflammatory cytokines in lung-infiltrated macrophages, neutrophils, and natural killer and natural killer T cells and alleviated the antigen-presenting properties of lung-infiltrated macrophages and dendritic cells (DCs). Additionally, Exo-d-MAPPS promoted the expansion of immunosuppressive IL-10-producing alternatively activated macrophages, regulatory DCs, and CD4+FoxP3+T regulatory cells in inflamed lungs which resulted in the attenuation of chronic airway inflammation. In a similar manner, as it was observed in an animal model, Exo-d-MAPPS treatment significantly improved the pulmonary status and quality of life of COPD patients. Importantly, Exo-d-MAPPS was well tolerated since none of the 30 COPD patients reported any adverse effects after Exo-d-MAPPS administration. In summing up, we believe that Exo-d-MAPPS could be considered a potentially new therapeutic agent in the treatment of chronic inflammatory lung diseases whose efficacy should be further explored in large clinical trials.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Dragica Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Ruxana Sadikot
- Emory University School of Medicine, 648 Pierce Dr. NE, Atlanta, GA, USA
- Atlanta VA Medical Center, 1670 Clairmont Rd., Decatur/Atlanta, GA, USA
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Dragana Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| |
Collapse
|
10
|
Zhang D, Cao L, Wang Z, Feng H, Cai X, Xu M, Li M, Yu N, Yin Y, Wang W, Kang J. Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression. Biosci Rep 2019; 39:BSR20190440. [PMID: 31702007 PMCID: PMC6879355 DOI: 10.1042/bsr20190440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The present study aimed at investigating the therapeutic effect of Salidroside on skeletal muscle atrophy in a rat model of cigarette smoking-induced chronic obstructive pulmonary disease (COPD) and its potential mechanisms. METHODS Male Wistar rats were randomized, and treated intraperitoneally (IP) with vehicle (injectable water) or a low, medium or high dose of Salidroside, followed by exposure to cigarette smoking daily for 16 weeks. A healthy control received vehicle injection and air exposure. Their lung function, body weights and gastrocnemius (GN) weights, grip strength and cross-section area (CSA) of individual muscular fibers in the GN were measured. The levels of TNF-α, IL-6, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) in serum and GN tissues as well as myostatin and myogenin expression in GN tissues were measured. RESULTS In comparison with that in the healthy control, long-term cigarette smoking induced emphysema, significantly impaired lung function, reduced body and GN weights and CSA values in rats, accompanied by significantly increased levels of TNF-α, IL-6 and MDA, but decreased levels of SOD and GSH in serum and GN tissues. Furthermore, cigarette smoking significantly up-regulated myostatin expression, but down-regulated myogenin expression in GN tissues. Salidroside treatment decreased emphysema, significantly ameliorated lung function, increased antioxidant, but reduced MDA, IL-6 and TNF-α levels in serum and GN tissues of rats, accompanied by decreased myostain, but increased myogenin expression in GN tissues. CONCLUSION Salidroside mitigates the long-term cigarette smoking-induced emphysema and skeletal muscle atrophy in rats by inhibiting oxidative stress and inflammatory responses and regulating muscle-specific transcription factor expression.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Lihua Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Zhenshan Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Haoshen Feng
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xu Cai
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Mingtao Xu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Menglu Li
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Na Yu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yan Yin
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Wei Wang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
11
|
Shu J, Lu W, Yang K, Zheng Q, Li D, Li Y, Kuang M, Liu H, Li Z, Chen Y, Zhang C, Luo X, Huang J, Wu X, Tang H, Wang J. Establishment and evaluation of chronic obstructive pulmonary disease model by chronic exposure to motor vehicle exhaust combined with lipopolysaccharide instillation. Exp Physiol 2018; 103:1532-1542. [PMID: 30070749 DOI: 10.1113/ep087077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In this study, by using motor vehicle exhaust (MVE) exposure with or without lipopolysaccharide (LPS) instillation, we established, evaluated and compared MVE, LPS and MVE+LPS treatment-induced chronic obstructive pulmonary disease (COPD) models in mice. What is the main finding and its importance? Our study demonstrated that the combination of chronic exposure to MVE with early LPS instillation can establish a mouse model with some features of COPD, which will allow researchers to investigate the underlying molecular mechanisms linking air pollution and COPD pathogenesis. ABSTRACT Although it is well established that motor vehicle exhaust (MVE) has a close association with the occurrence and exacerbation of chronic obstructive pulmonary disease (COPD), very little is known about the combined effects of MVE and intermittent or chronic subclinical inflammation on COPD pathogenesis. Therefore, given the crucial role of inflammation in the development of COPD, we wanted to establish an animal model of COPD using both MVE exposure and airway inflammation, which could mimic the clinical pathological changes observed in COPD patients and greatly benefit the study of the molecular mechanisms of COPD. In the present study, we report that mice undergoing chronic exposure to MVE and intratracheal instillation of lipopolysaccharide (LPS) successfully established COPD, as characterized by persistent air flow limitation, airway inflammation, inflammatory cytokine production, emphysema and small airway remodelling. Moreover, the mice showed significant changes in ventricular and vascular pathology, including an increase in right ventricular pressure, right ventricular hypertrophy and remodelling of pulmonary arterial walls. We have thus established a new mouse COPD model by combining chronic MVE exposure with early intratracheal instillation of LPS, which will allow us to study the relationship between air pollution and the development of COPD and to investigate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanwei Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiongting Wu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
12
|
Sun D, Li Q, Ding D, Li X, Xie M, Xu Y, Liu X. Role of Krüppel-like factor 4 in cigarette smoke-induced pulmonary vascular remodeling. Am J Transl Res 2018; 10:581-591. [PMID: 29511453 PMCID: PMC5835824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Pulmonary hypertension (PH) is characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs), leading to dysregulated vascular remodeling. Cigarette smoke (CS) is a common risk factor causing PH, and our previous study showed that CS extract (CSE) stimulated abnormal PASMC proliferation. However, the molecular mechanism remains unclear. In systemic circulation, vascular remodeling in some diseases is associated with upregulation of Krüppel-like factor 4 (KLF4), which stimulates the proliferation of vascular smooth muscle cells. We therefore hypothesized that upregulation of KLF4 may play a role in pulmonary vascular remodeling and the development of PH. Our results showed that KLF4 expression was increased significantly in remodeled pulmonary arteries from the rat smoking model of pulmonary vascular remodeling, compared with controls. In human PASMCs in vitro, KLF4 knockdown by gene silencing decreased proliferation and migration significantly. At the same time, it inhibited the CSE-induced increase of AKT phosphorylation. These results indicate that KLF4 contributes to CS-induced pulmonary vascular remodeling, and that KLF4 gene knockdown may be a useful therapeutic intervention for PH.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Dandan Ding
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Xiaochen Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| |
Collapse
|
13
|
Zhang Y, Li W, Feng Y, Guo S, Zhao X, Wang Y, He Y, He W, Chen L. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks. Oncotarget 2017; 8:103375-103384. [PMID: 29262568 PMCID: PMC5732734 DOI: 10.18632/oncotarget.21874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuyan Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xilei Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
14
|
Shu J, Li D, Ouyang H, Huang J, Long Z, Liang Z, Chen Y, Chen Y, Zheng Q, Kuang M, Tang H, Wang J, Lu W. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Sci Rep 2017; 7:15454. [PMID: 29133824 PMCID: PMC5684336 DOI: 10.1038/s41598-017-15685-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Animal model of cigarette smoke (CS) -induced chronic obstructive pulmonary disease (COPD) is the primary testing methodology for drug therapies and studies on pathogenic mechanisms of disease. However, researchers have rarely run simultaneous or side-by-side tests of whole-body and nose-only CS exposure in building their mouse models of COPD. We compared and evaluated these two different methods of CS exposure, plus airway Lipopolysaccharides (LPS) inhalation, in building our COPD mouse model. Compared with the control group, CS exposed mice showed significant increased inspiratory resistance, functional residual capacity, right ventricular hypertrophy index, and total cell count in BALF. Moreover, histological staining exhibited goblet cell hyperplasia, lung inflammation, thickening of smooth muscle layer on bronchia, and lung angiogenesis in both methods of CS exposure. Our data indicated that a viable mouse model of COPD can be established by combining the results from whole-body CS exposure, nose-only CS exposure, and airway LPS inhalation testing. However, in our study, we also found that, given the same amount of particulate intake, changes in right ventricular pressure and intimal thickening of pulmonary small artery are a little more serious in nose-only CS exposure method than changes in the whole-body CS exposure method.
Collapse
Affiliation(s)
- Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhihao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yiguan Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States.
| |
Collapse
|