1
|
O'Sullivan EA, Wallis R, Mossa F, Bishop CL. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ AGING 2024; 10:41. [PMID: 39277623 PMCID: PMC11401916 DOI: 10.1038/s41514-024-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
Collapse
Affiliation(s)
- Emily A O'Sullivan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Federica Mossa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Hamm C, Fifield BA, Kay A, Kulkarni S, Gupta R, Mathews J, Ferraiuolo RM, Al-Wahsh H, Mailloux E, Hussein A, Porter LA. A prospective phase II clinical trial identifying the optimal regimen for carboplatin plus standard backbone of anthracycline and taxane-based chemotherapy in triple negative breast cancer. Med Oncol 2022; 39:49. [PMID: 35103812 DOI: 10.1007/s12032-021-01637-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Addition of platinums to combination chemotherapy for triple negative breast cancer (TNBC) has shown efficacy and is increasingly accepted in the clinic, yet optimal delivery is unknown. A prospective clinical trial with TNBC patients was conducted to determine the optimal chemotherapy regimen to deliver carboplatin with standard dose dense ACT. Tissue microarray was conducted to isolate markers indicative of response to treatment. 90 TNBC patients were enrolled onto our trial. The most successful version placed the carboplatin on the second and final paclitaxel treatment with liberal hematological parameters. Our final regimen had the lowest grade 3 or 4 toxicities, no delays, no dose reductions of carboplatin, and 32% reduction in paclitaxel doses. Stage I (AJCC7) patients did well with carboplatin-based chemotherapy with zero relapse rate. Reduction in protein levels of androgen receptor and PD-L1 were found to be potential indicators of patient relapse. We have optimized a protocol for the addition of carboplatin to standard of care chemotherapy in TNBC patients. Early data indicates reduced protein levels of androgen receptor and PD-L1 as indicators of response to treatment.Trial registration This trial was registered at Canadian Cancer Trials. http://www.canadiancancertrials.ca/.
Collapse
Affiliation(s)
- Caroline Hamm
- University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Western University, Windsor, ON, N9B 3P4, Canada.
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| | - Bre-Anne Fifield
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | - Amin Kay
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
| | - Swati Kulkarni
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Rasna Gupta
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | - John Mathews
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
| | - Rosa-Maria Ferraiuolo
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | - Emily Mailloux
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | | | - Lisa A Porter
- University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada.
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
3
|
Rana MK, Rana APS, Khera U. Expression of p53 and p16 in Carcinoma Breast Tissue: Depicts Prognostic Significance or Coincidence. Cureus 2021; 13:e19395. [PMID: 34925997 PMCID: PMC8654126 DOI: 10.7759/cureus.19395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer remains the most common malignancy among the Indian female population. The p16 and p53 genes are frequently mutated in breast cancer. Therefore, we aimed to evaluate the prognostic significance of p16 and p53 overexpression in breast cancer and their correlation with various traditional prognostic parameters. Total of 100 confirmed cases of breast cancers were selected. Patients who underwent chemotherapy treatment were excluded from the study. Estrogen receptor (ER), progesterone receptor (PR), and Her2neu immunohistochemistry were performed. The p16 and p53 immunohistochemistry was performed on all cases and association with various clinicopathologic parameters was determined. The mean age of carcinoma breast was 53.3+11.6 with age ranging from 28 to 82 years. On histopathological examination, 93% of cases were of invasive ductal cell carcinoma (IDC) with majority of grade I (43%). Only 14% of cases showed positive p53 expression and 19% of cases showed positive p16 expression. P16 was seen in a very significant correlation with p53 expression in all breast carcinoma cases (<0.002). p53 expression showed a positively significant (<0.05) correlation with age and grade III. The p16 expression was seen significantly correlated with low mitotic activity index (MAI) only. The p53 over-expression was seen in worse prognostic factors such as high tumor grade, Her2neu and triple-negative expression suggested its potential role in pathogenesis of carcinoma breast. In addition, high expression of p16 seen in low mitotic count and Her2neu expression also emphasized the role of this biomarker and recommends further molecular-based research.
Collapse
|
4
|
Jovanovic DV, Mitrovic SL, Milosavljevic MZ, Ilic MB, Stankovic VD, Vuletic MS, Dimitrijevic Stojanovic MN, Milosev DB, Azanjac GL, Nedeljkovic VM, Radovanovic D. Breast Cancer and p16: Role in Proliferation, Malignant Transformation and Progression. Healthcare (Basel) 2021; 9:healthcare9091240. [PMID: 34575014 PMCID: PMC8468846 DOI: 10.3390/healthcare9091240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The definition of new molecular biomarkers could provide a more reliable approach in predicting the prognosis of invasive breast cancers (IBC). The aim of this study is to analyze the expression of p16 protein in IBC, as well as its participation in malignant transformation. The study included 147 patients diagnosed with IBC. The presence of non-invasive lesions (NIL) was noted in each IBC and surrounding tissue. p16 expression was determined by reading the percentage of nuclear and/or cytoplasmic expression in epithelial cells of IBC and NIL, but also in stromal fibroblasts. Results showed that expression of p16 increases with the progression of cytological changes in the epithelium; it is significantly higher in IBC compared to NIL (p < 0.0005). Cytoplasmic p16 expression is more prevalent in IBC (76.6%), as opposed to nuclear staining, which is characteristic of most NIL (21.1%). There is a difference in p16 expression between different molecular subtypes of IBC (p = 0.025). In the group of p16 positive tumors, pronounced mononuclear infiltrates (p = 0.047) and increased expression of p16 in stromal fibroblasts (p = 0.044) were noted. In conclusion, p16 protein plays an important role in proliferation, malignant transformation, as well as in progression from NIL to IBC.
Collapse
Affiliation(s)
- Dalibor V. Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Slobodanka L. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
- Correspondence: ; Tel.: +381-658080877
| | - Milos Z. Milosavljevic
- Department of Pathology, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia; (M.Z.M.); (D.B.M.)
| | - Milena B. Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Vesna D. Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Milena S. Vuletic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Milica N. Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Danijela B. Milosev
- Department of Pathology, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia; (M.Z.M.); (D.B.M.)
| | - Goran L. Azanjac
- Department of Plastic Surgery, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladica M. Nedeljkovic
- Institute of Pathology, Faculty of Medicine, University in Pristina—Kosovska Mitrovica,38220 Kosovska Mitrovica, Serbia;
| | - Dragce Radovanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
5
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
6
|
Hashmi AA, Naz S, Hashmi SK, Hussain ZF, Irfan M, Khan EY, Faridi N, Khan A, Edhi MM. Prognostic significance of p16 & p53 immunohistochemical expression in triple negative breast cancer. BMC Clin Pathol 2018; 18:9. [PMID: 30305801 PMCID: PMC6171321 DOI: 10.1186/s12907-018-0077-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background p16 and p53 genes are frequently mutated in triple negative breast cancer & prognostic value of these mutations have been shown; however, their role as immunohistochemical overexpression has not been fully validated. Therefore we aimed to evaluate the association of p16 and p53 overexpression in triple negative breast cancer with various prognostic parameters. Methods Total 150 cases of triple negative breast cancers were selected from records of pathology department archives that underwent surgeries at Liaquat National hospital, Karachi from January 2008 till December 2013. ER, PR and Her2neu immunohistochemistry were re-performed to confirm triple negative status. p16 & p53 immunohistochemistry was performed on all cases and association with various clinicopathologic parameters was determined. Results Mean age of the patients involved in the study was 48.9 years. Most of the patients presented at stage T2 with a high mean ki67 index i.e. 46.9%. 42.7% of cases had nodal metastasis. Although 84% cases were of invasive ductal carcinoma; however a significant proportion of cases were of metaplastic histology (9.3%). Fifty-one percent (76 cases) of cases showed positive p53 expression while 49% (74 cases) were negative. Higher percentage of p53 expression was found to correlate with higher T stage, high ki67 index and higher nodal stage. On the other hand, strong intensity of p53 expression was positively correlated with higher tumor grade and ki67 index. Seventy-one percent (98 cases) of cases showed positive p16 expression, whereas 24.8% (34 cases) were negative and 3.6% (5 cases) showed focal positive p16 expression. However, no significant association was found between p16 expression and various clinical and pathologic parameters. Similarly, no significant association of either p16 or p53 over-expression was noted with recurrence status of patients. Conclusion On the basis of significant association of p53 over-expression with worse prognostic factors in triple negative breast cancer, therefore we suggest that more large scale studies are needed to validate this finding in loco-regional population. Moreover, high expression of p16 in triple negative breast cancer suggests a potential role of this biomarker in triple negative breast cancer pathogenesis which should be investigated with molecular based research in our population.
Collapse
Affiliation(s)
- Atif Ali Hashmi
- 1Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Samreen Naz
- 1Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | | | | - Muhammad Irfan
- 1Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Erum Yousuf Khan
- 1Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Naveen Faridi
- 1Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Amir Khan
- 3Kandahar University, North, Kandahar 3802 Afghanistan
| | | |
Collapse
|
7
|
Sirkisoon SR, Carpenter RL, Rimkus T, Anderson A, Harrison A, Lange AM, Jin G, Watabe K, Lo HW. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 2018; 37:2502-2514. [PMID: 29449694 PMCID: PMC5948110 DOI: 10.1038/s41388-018-0132-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.
Collapse
Affiliation(s)
| | | | - Tadas Rimkus
- Department of Cancer Biology, Winston-Salem, NC, USA
| | | | | | | | - Guangxu Jin
- Department of Radiology, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Winston-Salem, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Gerashchenko BI, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol 2016; 145:497-508. [PMID: 26860864 DOI: 10.1007/s00418-016-1415-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
Aneuploid cells should have a reduced proliferation rate due to difficulty in proceeding through mitosis. However, contrary to this, high aneuploidy is associated with aggressive tumour growth and poor survival prognosis, in particular in triploid breast cancer. A further paradox revolves around the observation that, while cell senescence should inhibit proliferation, the senescence marker p16INK4a correlates with poor treatment outcome in patients with a very aggressive triple-negative breast carcinoma (TNBC). In this study, we aim to pour light on the possible relationship of these conundrums with polyploidy of tumour cells. We performed detailed analysis of DNA histogram profiles in diagnostic core biopsies of 30 cases of operable breast cancer and found that near triploidy in TNBC and other forms correlated with weak or no response to neoadjuvant chemotherapy (NAC) as scored by Miller-Payne index. Polyploid cells in operation samples from tumours that were non-responsive to NAC treatment were Ki67 and CD44 positive. In addition, polyploid cells were positive for markers of embryonic stemness (OCT4, SOX2, NANOG) and senescence (p16INK4a). The relationship patterns between p16INK4a and NANOG were heterogeneous, with predominantly mutually exclusive expression but also synergistic and intermediate variants in the same samples. We conclude that the aneuploidy and senescence paradoxes can be explained by the mutual platform of polyploidy, conferring genomic and epigenetic instability as a survival advantage. Such cells are able to bypass aneuploidy restrictions of conventional mitosis and overcome the barrier of senescence by a shift to self-renewal, resulting in progression of cancer.
Collapse
Affiliation(s)
- B I Gerashchenko
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Sciences of Ukraine, Kiev, 03022, Ukraine
| | - K Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - J Eglitis
- Faculty of Medicine, University of Latvia, Riga, 1586, Latvia
| | - A Huna
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - V Grjunberga
- Faculty of Medicine, University of Latvia, Riga, 1586, Latvia
| | - J Erenpreisa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia.
| |
Collapse
|
9
|
Sirkisoon SR, Carpenter RL, Rimkus T, Miller L, Metheny-Barlow L, Lo HW. EGFR and HER2 signaling in breast cancer brain metastasis. Front Biosci (Elite Ed) 2016; 8:245-63. [PMID: 26709660 DOI: 10.2741/e765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis.
Collapse
Affiliation(s)
- Sherona R Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Tadas Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Lance Miller
- Department of Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC27157, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Linda Metheny-Barlow
- Department of Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC27157, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157,
| |
Collapse
|