1
|
Sempere LF. Ethical Considerations and Implications of Multi-Cancer Early Detection Screening: Reliability, Access and Cost to Test and Treat. Camb Q Healthc Ethics 2025:1-10. [PMID: 39749955 DOI: 10.1017/s0963180124000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This essay focuses on the ethical considerations and implications of providing a universal multi-cancer screening test as the best approach to reduce societal cancer burden in a society with limited funds, resources, and infrastructure. With 1.9 million cancer diagnoses each year in the United States, with 86% of all cancers diagnosed in individuals over the age of 50, and with screening tools approved for only four cancer types (breast, cervical, colorectal, and lung cancer), it seems that a multi-cancer screening test to detect most cancer early that is easy to administer, and is accurate and cost-effective, would be worth considering. Whole-body magnetic resonance imaging and a multi-marker blood test are the two main technologies that we will discuss as a universal screening test. However, to understand and appreciate the societal and clinical breakthrough of such a screening test, we must first consider the accessibility and efficacy of current screening methods. We conclude with a closer examination of the ethical implications of implementing the Galleri test as a multi-cancer detection screening tool as adamantly advocated by the company that developed this blood-based test.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Zandieh G, Afyouni S, Kato Y, Sesso J, Ortman J, Bandeen-Roche K, Walston J, Lima JAC, Ambale-Venkatesh B. Whole-Body MRI for Assessment of Physical Frailty. J Magn Reson Imaging 2024. [PMID: 39429021 DOI: 10.1002/jmri.29630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Ghazal Zandieh
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoko Kato
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jaclyn Sesso
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jason Ortman
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joao A C Lima
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bharath Ambale-Venkatesh
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Rossi A, Cattabriga A, Bezzi D. Symptomatic Myeloma: PET, Whole-Body MR Imaging with Diffusion-Weighted Imaging or Both. PET Clin 2024; 19:525-534. [PMID: 38969566 DOI: 10.1016/j.cpet.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
According to international guidelines, patients with suspected myeloma should primarily undergo low-dose whole-body computed tomography (CT) for diagnostic purposes. To optimize sensitivity and specificity and enable treatment response assessment, whole-body MR (WB-MR) imaging should include diffusion-weighted imaging with apparent diffusion coefficient maps and T1-weighted Dixon sequences with bone marrow Fat Fraction Quantification. At baseline WB-MR imaging shows greater sensitivity for the detecting focal lesions and diffuse bone marrow infiltration pattern than 18F-fluorodeoxyglucose PET-CT, which is considered of choice for evaluating response to treatment and minimal residual disease and imaging of extramedullary disease.
Collapse
Affiliation(s)
- Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna; Dipartimento di Scienze Mediche e Chirurgiche, Via Massarenti 9, 40138 Bologna, Italy
| | | |
Collapse
|
4
|
Chianca V, Lanckoroński M, Curti M, Chalian M, Sudoł-Szopińska I, Giraudo C, Del Grande F. Whole-Body Magnetic Resonance Imaging in Rheumatology. Radiol Clin North Am 2024; 62:865-876. [PMID: 39059977 DOI: 10.1016/j.rcl.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This review focuses on the most frequent whole-body MRI applications in patients with rheumatological pathologies, for which this tool can be helpful to both radiologists and clinicians. It reports technical aspects of the acquisition of both 1.5 and 3.0 T scanners. The article lists the main findings that help radiologists during the evaluation of a specific pathology, both in the diagnostic phase and during follow-up.
Collapse
Affiliation(s)
- Vito Chianca
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland.
| | - Michał Lanckoroński
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1 Street, Warsaw 02-637, Poland
| | - Marco Curti
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland
| | - Majid Chalian
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Iwona Sudoł-Szopińska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1 Street, Warsaw 02-637, Poland
| | - Chiara Giraudo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Filippo Del Grande
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland; Facoltà di Scienze Biomediche, Università Della Svizzera Italiana, Via Buffi 13, Lugano 6900, Switzerland
| |
Collapse
|
5
|
Zugni F, Mariani L, Lambregts DMJ, Maggioni R, Summers PE, Granata V, Pecchi A, Di Costanzo G, De Muzio F, Cardobi N, Giovagnoni A, Petralia G. Whole-body MRI in oncology: acquisition protocols, current guidelines, and beyond. LA RADIOLOGIA MEDICA 2024; 129:1352-1368. [PMID: 38990426 DOI: 10.1007/s11547-024-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Acknowledging the increasing use of whole-body magnetic resonance imaging (WB-MRI) in the oncological setting, we conducted a narrative review focusing on practical aspects of the examination and providing a synthesis of various acquisition protocols described in the literature. Firstly, we addressed the topic of patient preparation, emphasizing methods to enhance examination acceptance. This included strategies for reducing anxiety and patient distress, improving staff-patient interactions, and increasing overall patient comfort. Secondly, we analysed WB-MRI acquisition protocols recommended in existing imaging guidelines, such as MET-RADS-P, MY-RADS, and ONCO-RADS, and provided an overview of acquisition protocols reported in the literature regarding other expanding applications of WB-MRI in oncology, in patients with breast cancer, ovarian cancer, melanoma, colorectal and lung cancer, lymphoma, and cancers of unknown primary. Finally, we suggested possible acquisition parameters for whole-body images across MR systems from three different vendors.
Collapse
Affiliation(s)
- Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Leonardo Mariani
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Roberta Maggioni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Federica De Muzio
- Department of Radiology, Pineta Grande Hospital, Via Domitiana Km 30, Castel Volturno, Italy
| | - Nicolò Cardobi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giuseppe Petralia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Cattabriga A, Renzetti B, Galuppi F, Bartalena L, Gaudiano C, Brocchi S, Rossi A, Schiavina R, Bianchi L, Brunocilla E, Spinozzi L, Catanzaro C, Castellucci P, Farolfi A, Fanti S, Tunariu N, Mosconi C. Multiparametric Whole-Body MRI: A Game Changer in Metastatic Prostate Cancer. Cancers (Basel) 2024; 16:2531. [PMID: 39061171 PMCID: PMC11274871 DOI: 10.3390/cancers16142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer ranks among the most prevalent tumours globally. While early detection reduces the likelihood of metastasis, managing advanced cases poses challenges in diagnosis and treatment. Current international guidelines support the concurrent use of 99Tc-Bone Scintigraphy and Contrast-Enhanced Chest and Abdomen CT for the staging of metastatic disease and response assessment. However, emerging evidence underscores the superiority of next-generation imaging techniques including PSMA-PET/CT and whole-body MRI (WB-MRI). This review explores the relevant scientific literature on the role of WB-MRI in metastatic prostate cancer. This multiparametric imaging technique, combining the high anatomical resolution of standard MRI sequences with functional sequences such as diffusion-weighted imaging (DWI) and bone marrow relative fat fraction (rFF%) has proved effective in comprehensive patient assessment, evaluating local disease, most of the nodal involvement, bone metastases and their complications, and detecting the increasing visceral metastases in prostate cancer. It does have the advantage of avoiding the injection of contrast medium/radionuclide administration, spares the patient the exposure to ionizing radiation, and lacks the confounder of FLARE described with nuclear medicine techniques. Up-to-date literature regarding the diagnostic capabilities of WB-MRI, though still limited compared to PSMA-PET/CT, strongly supports its widespread incorporation into standard clinical practice, alongside the latest nuclear medicine techniques.
Collapse
Affiliation(s)
- Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Benedetta Renzetti
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Francesco Galuppi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Laura Bartalena
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Lorenzo Bianchi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Eugenio Brunocilla
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Luca Spinozzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Calogero Catanzaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Stefano Fanti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Nina Tunariu
- Clinical Radiology, Royal Marsden Hospital & Institute of Cancer Research, London SW3 6JJ, UK;
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| |
Collapse
|
7
|
Mori H, Wakabayashi H, Saito S, Nakajima K, Yoshida K, Hiromasa T, Kinuya S. Evaluating the diagnostic efficacy of whole-body MRI versus 123I-mIBG/ 131I-mIBG imaging in metastatic pheochromocytoma and paraganglioma. Sci Rep 2024; 14:13828. [PMID: 38879654 PMCID: PMC11180102 DOI: 10.1038/s41598-024-64607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
This study aimed to compare tumor lesion detectability and diagnostic accuracy of whole-body magnetic resonance imaging (WB-MRI) and radioiodine-labeled meta-iodo-benzylguanidine (mIBG) imaging techniques in patients with metastatic pheochromocytoma and paraganglioma (PPGL). This retrospective study included 13 patients had pheochromocytoma and 5 had paraganglioma, who were all suspected of having metastatic tumors. Each patient underwent WB-MRI and 123I-mIBG as a pretreatment screening for 131I-mIBG therapy. Two expert reviewers evaluated WB-MRI, 123I-mIBG images, and post-therapy 131I-mIBG images for the presence of metastatic lesions in the lungs, bones, liver, lymph nodes, and other organs. Diagnostic measures for detecting metastatic lesions, including sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and receiver operating characteristics (ROC)-area under the curve (AUC), were calculated for each imaging technique. We analyzed WB-MRI images for detecting metastatic lesions, which demonstrated sensitivity, specificity, accuracy, PPV, NPV, and AUC of 82%, 97%, 90%, 96%, 86%, and 0.92, respectively. These values were 83%, 95%, 89%, 94%, 86%, and 0.90 in 123I-mIBG images and 85%, 92%, 89%, 91%, 87%, and 0.91 in post-therapy 131I-mIBG images, respectively. Our results reveal the comparable diagnostic accuracy of WB-MRI to one of the mIBG images.
Collapse
Affiliation(s)
- Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shintaro Saito
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kotaro Yoshida
- Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Vulasala SS, Virarkar M, Karbasian N, Calimano-Ramirez LF, Daoud T, Amini B, Bhosale P, Javadi S. Whole-body MRI in oncology: A comprehensive review. Clin Imaging 2024; 108:110099. [PMID: 38401295 DOI: 10.1016/j.clinimag.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) has cemented its position as a pivotal tool in oncological diagnostics. It offers unparalleled soft tissue contrast resolution and the advantage of sidestepping ionizing radiation. This review explores the diverse applications of WB-MRI in oncology. We discuss its transformative role in detecting and diagnosing a spectrum of cancers, emphasizing conditions like multiple myeloma and cancers with a proclivity for bone metastases. WB-MRI's capability to encompass the entire body in a singular scan has ushered in novel paradigms in cancer screening, especially for individuals harboring hereditary cancer syndromes or at heightened risk for metastatic disease. Additionally, its contribution to the clinical landscape, aiding in the holistic management of multifocal and systemic malignancies, is explored. The article accentuates the technical strides achieved in WB-MRI, its myriad clinical utilities, and the challenges in integration into standard oncological care. In essence, this review underscores the transformative potential of WB-MRI, emphasizing its promise as a cornerstone modality in shaping the future trajectory of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States.
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Niloofar Karbasian
- Department of Radiology, McGovern Medical School at University of Texas Health Houston, Houston, TX, United States
| | - Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Taher Daoud
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Behrang Amini
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priya Bhosale
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Javadi
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Voit D, Kollmeier JM, Kalentev O, van Zalk M, Frahm J. Whole-body magnetic resonance imaging in two minutes: cross-sectional real-time coverage of multiple volumes. Quant Imaging Med Surg 2023; 13:8739-8746. [PMID: 38106264 PMCID: PMC10722042 DOI: 10.21037/qims-23-923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 12/19/2023]
Abstract
This work describes a novel technique for rapid and motion-robust whole-body magnetic resonance imaging (MRI). The method employs highly undersampled radial fast low angle shot (FLASH) sequences to cover large volumes by cross-sectional real-time MRI with automatic slice advancement after each frame. The slice shift typically amounts to a fraction of the slice thickness (e.g., 10% to 50%) in order to generate a successive series of partially overlapping sections. Joint reconstructions of these serial images and their respective coil sensitivity maps rely on nonlinear inversion (NLINV) with regularization to the image and sensitivity maps of a preceding frame. The procedure exploits the spatial similarity of neighboring sections. Whole-body scanning is accomplished by measuring multiple volumes at predefined locations, i.e., at fixed table positions, in combination with intermediate automatic movements of the patient table. Individual volumes may take advantage of different field-of-views, image orientations, spatial and temporal resolutions as well as contrasts. Preliminary proof-of-principle applications to healthy subjects at 3 T without cardiac gating and during free breathing yield high-quality anatomic images with acquisition times of less than 100 ms. Spin-density and T1 contrasts are obtained by spoiled FLASH sequences, while T2-type (i.e., T2/T1) contrast results from refocused FLASH sequences that generate a steady state free precession (SSFP) free induction decay (FID) signal. Total measuring times excluding vendor-controlled adjustment procedures are less than two minutes for a 100 cm scan that, for example, covers the body from head to thigh by three optimized volumes and more than 1,300 images. In conclusion, after demonstrating technical feasibility the proposed method awaits clinical trials.
Collapse
Affiliation(s)
| | - Jost M. Kollmeier
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksandr Kalentev
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maaike van Zalk
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
10
|
Poon D, Tang C, Vijayanathan S, Mak D. The use of MRI for the imaging of metastatic bone lesions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:271-279. [PMID: 38054411 DOI: 10.23736/s1824-4785.23.03538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Skeletal metastatic disease accounts for significant overall morbidity in cancer patients. Accurate and accessible imaging forms an integral part of the investigation for patients with suspected or known skeletal metastatic disease; it is considered indispensable in making appropriate oncological treatment decisions. Magnetic resonance imaging (MRI) is a contemporary imaging modality that provides excellent spatial and contrast resolution for bone and soft tissues. Therefore, it is particularly useful for imaging patients suffering from metastatic skeletal disease. This review provides a fundamental overview of the physics and image generation of MRI. The most commonly used MRI sequences in the investigation of metastatic skeletal disease are also discussed. Additionally, a review of the pathophysiological basis of metastatic bone disease is presented, along with an introduction to the interpretation of MRI sequences obtained for metastatic bone disease. Finally, the strengths and drawbacks of MRI are considered in comparison to alternative imaging modalities for the investigation of this common and important oncological complication.
Collapse
Affiliation(s)
- Daniel Poon
- MSK Imaging, Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Christopher Tang
- MSK Imaging, Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sanjay Vijayanathan
- MSK Imaging, Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Davina Mak
- MSK Imaging, Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK -
| |
Collapse
|
11
|
Sánchez-Heras AB, Ramon y Cajal T, Pineda M, Aguirre E, Graña B, Chirivella I, Balmaña J, Brunet J. SEOM clinical guideline on heritable TP53-related cancer syndrome (2022). Clin Transl Oncol 2023; 25:2627-2633. [PMID: 37133731 PMCID: PMC10425559 DOI: 10.1007/s12094-023-03202-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Li-Fraumeni syndrome is caused by heterozygous germline pathogenic variants in the TP53 gene. It involves a high risk of a variety of malignant tumors in childhood and adulthood, the main ones being premenopausal breast cancer, soft tissue sarcomas and osteosarcomas, central nervous system tumors, and adrenocortical carcinomas. The variability of the associated clinical manifestations, which do not always fit the classic criteria of Li-Fraumeni syndrome, has led the concept of SLF to extend to a more overarching cancer predisposition syndrome, termed hereditable TP53-related cancer syndrome (hTP53rc). However, prospective studies are needed to assess genotype-phenotype characteristics, as well as to evaluate and validate risk-adjusted recommendations. This guideline aims to establish the basis for interpreting pathogenic variants in the TP53 gene and provide recommendations for effective screening and prevention of associated cancers in carrier individuals.
Collapse
Affiliation(s)
| | | | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
| | - Elena Aguirre
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
| | - Begoña Graña
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
| | - Isabel Chirivella
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Judit Balmaña
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| | - the SEOM Hereditary Cancer Working Group and AEGH Hereditary Cancer Committee
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Alicante, Spain
- Medical Oncology Service, Hospital Sant Pau, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| |
Collapse
|
12
|
Rossi A, Prochowski Iamurri A, Diano D, Oboldi D, Sintuzzi E, Maurizio L, Andalò A, Cavallucci M, Ferroni F, Amadori E, Barone D, Petralia G. Patient centered radiology: investigating 3 Tesla whole body MRI acceptance in cancer patients. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01665-y. [PMID: 37395842 DOI: 10.1007/s11547-023-01665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Whole body magnetic resonance imaging (WB-MRI) is a promising emerging imaging technology for detecting bone and soft tissue pathology, especially in the onco-hematological field. This study aims to evaluate cancer patients' experience of WB-MRI performed on a 3T scanner compared to other diagnostic total body examinations. MATERIAL AND METHOD In this prospective committee-approved study, patients completed a questionnaire in person (n = 134) after undergoing a WB-MRI scan to collect data on their physical and psychological reactions during the scan, the global satisfaction level, and preference for other types of MRI or computed tomography (CT), or positron emission tomography (PET/CT). Of all patients who had performed a CT or PET/CT the previous year, 61.9% had already undergone an MRI. The most common symptoms reported were: 38.1% perceived a localized increase in temperature and 34.4% numbness and tingling of the limbs. The scan time averaged 45 min and was well tolerated by most patients (112, 85.5%). Overall, WB-MRI was appreciated by the majority (121/134-90.3%) of patients who said they would probably undergo the procedure again. Patients preferred the WB-MRI in 68.7% of cases (92/134), followed by CT in 15.7% of cases (21/134) and by PET/CT in 7.4% (10/134), with 8.4% (11/134) of patients without any preference. The preference for imaging modalities was age-dependent (p = 0.011), while (p > 0.05) was independent of sex and a primary cancer site. CONCLUSION These results demonstrate a high degree of WB-MRI acceptance from a patient's point of view.
Collapse
Affiliation(s)
- Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Andrea Prochowski Iamurri
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Danila Diano
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Devil Oboldi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuele Sintuzzi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laghi Maurizio
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alice Andalò
- Data Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martina Cavallucci
- Data Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Fabio Ferroni
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Amadori
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
13
|
Obara M, Kwon J, Yoneyama M, Ueda Y, Cauteren MV. Technical Advancements in Abdominal Diffusion-weighted Imaging. Magn Reson Med Sci 2023; 22:191-208. [PMID: 36928124 PMCID: PMC10086402 DOI: 10.2463/mrms.rev.2022-0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Since its first observation in the 18th century, the diffusion phenomenon has been actively studied by many researchers. Diffusion-weighted imaging (DWI) is a technique to probe the diffusion of water molecules and create a MR image with contrast based on the local diffusion properties. The DWI pixel intensity is modulated by the hindrance the diffusing water molecules experience. This hindrance is caused by structures in the tissue and reflects the state of the tissue. This characteristic makes DWI a unique and effective tool to gain more insight into the tissue's pathophysiological condition. In the past decades, DWI has made dramatic technical progress, leading to greater acceptance in clinical practice. In the abdominal region, however, acquiring DWI with good quality is challenging because of several reasons, such as large imaging volume, respiratory and other types of motion, and difficulty in achieving homogeneous fat suppression. In this review, we discuss technical advancements from the past decades that help mitigate these problems common in abdominal imaging. We describe the use of scan acceleration techniques such as parallel imaging and compressed sensing to reduce image distortion in echo planar imaging. Then we compare techniques developed to mitigate issues due to respiratory motion, such as free-breathing, respiratory-triggering, and navigator-based approaches. Commonly used fat suppression techniques are also introduced, and their effectiveness is discussed. Additionally, the influence of the abovementioned techniques on image quality is demonstrated. Finally, we discuss the current and future clinical applications of abdominal DWI, such as whole-body DWI, simultaneous multiple-slice excitation, intravoxel incoherent motion, and the use of artificial intelligence. Abdominal DWI has the potential to develop further in the future, thanks to scan acceleration and image quality improvement driven by technological advancements. The accumulation of clinical proof will further drive clinical acceptance.
Collapse
Affiliation(s)
| | | | | | - Yu Ueda
- MR Clinical Science, Philips Japan Ltd
| | | |
Collapse
|
14
|
Mazzocco K, Busacchio D, Summers PE, Marzorati C, Pricolo P, Petralia G, Pravettoni G. Is whole-body magnetic resonance imaging a source of anxiety in oncological patients? Cancer Rep (Hoboken) 2023; 6:e1737. [PMID: 36494325 PMCID: PMC10026313 DOI: 10.1002/cnr2.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Magnetic resonance often produces feelings of anxiety before, or during, the examination. The aim of this study was to assess anxiety and potential causes of anxiety in cancer patients undergoing whole-body magnetic resonance imaging (WB-MRI). METHODS This monocentric study recruited 70 cancer patients who were scheduled to undergo WB-MRI for detection, staging or therapy monitoring. At baseline (prior to the WB-MRI), assessments were performed using the State-Trait Anxiety Inventory (STAI-Y 1), Illness Perception Questionnaire (IPQ-R), Big Five Inventory (BIF-10) and Revised Life Orientation Test (LOT-R), while at the end of the WB-MRI examination the patients repeated the STAI-Y 1 questionnaire and were asked to indicate their preference between WB-MRI and computed tomography. RESULTS We found a positive correlation between pre- and post-examination STAI-Y 1 scores (r = 0.536, p < .0001), with no significant difference between them. Pre-examination STAI-Y 1 scores had a negative correlation with the emotional stability in the BIF-10 questionnaire (r = -0.47, p = .001) and a positive correlation with emotional representation (r = 0.57, p = .001) in IPQ-R. The post-examination STAI-Y 1 had a negative correlation with optimistic orientation (r = -0.59, p = .001). CONCLUSIONS The anxiety associated with a WB-MRI examination was only in small part associated with the examination itself, and in fact, most patients preferred WB-MRI to computed tomography. Concern with the outcome of the examination was likely a greater source of anxiety.
Collapse
Affiliation(s)
- Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul Eugene Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Precision Imaging and Research Unit - Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Koch V, Merklein D, Zangos S, Eichler K, Gruenewald LD, Mahmoudi S, Booz C, Yel I, D'Angelo T, Martin SS, Bernatz S, Hammerstingl RM, Albrecht MH, Scholtz JE, Kaltenbach B, Vogl TJ, Langenbach M, Gruber-Rouh T. Free-breathing accelerated whole-body MRI using an automated workflow: Comparison with conventional breath-hold sequences. NMR IN BIOMEDICINE 2023; 36:e4828. [PMID: 36082477 DOI: 10.1002/nbm.4828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Whole-body magnetic resonance imaging (MRI) has become increasingly popular in oncology. However, the long acquisition time might hamper its widespread application. We sought to assess and compare free-breathing sequences with conventional breath-hold examinations in whole-body MRI using an automated workflow process. This prospective study consisted of 20 volunteers and six patients with a variety of pathologies who had undergone whole-body 1.5-T MRI that included T1-weighted radial and Dixon volumetric interpolated breath-hold examination sequences. Free-breathing sequences were operated by using an automated user interface. Image quality, diagnostic confidence, and image noise were evaluated by two experienced radiologists. Additionally, signal-to-noise ratio was measured. Diagnostic performance for the overall detection of pathologies was assessed using the area under the receiver operating characteristics curve (AUC). Study participants were asked to rate their examination experiences in a satisfaction survey. MR free-breathing scans were rated as at least equivalent to conventional MR scans in more than 92% of cases, showing high overall diagnostic accuracy (95% [95% CI 92-100]) and performance (AUC 0.971, 95% CI 0.942-0.988; p < 0.0001) for the assessment of pathologies at simultaneously reduced examination times (25 ± 2 vs. 32 ± 3 min; p < 0.0001). Interrater agreement was excellent for both free-breathing (ϰ = 0.96 [95% CI 0.88-1.00]) and conventional scans (ϰ = 0.93 [95% CI 0.84-1.00]). Qualitative and quantitative assessment for image quality, image noise, and diagnostic confidence did not differ between the two types of MR image acquisition (all p > 0.05). Scores for patient satisfaction were significantly better for free-breathing compared with breath-hold examinations (p = 0.0145), including significant correlations for the grade of noise (r = 0.79, p < 0.0001), tightness (r = 0.71, p < 0.0001), and physical fatigue (r = 0.52, p = 0.0065). In summary, free-breathing whole-body MRI in tandem with an automated user interface yielded similar diagnostic performance at equivalent image quality and shorter acquisition times compared to conventional breath-hold sequences.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Domenica Merklein
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stephan Zangos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Leon D Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Benjamin Kaltenbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marcel Langenbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Dobre EG, Surcel M, Constantin C, Ilie MA, Caruntu A, Caruntu C, Neagu M. Skin Cancer Pathobiology at a Glance: A Focus on Imaging Techniques and Their Potential for Improved Diagnosis and Surveillance in Clinical Cohorts. Int J Mol Sci 2023; 24:1079. [PMID: 36674595 PMCID: PMC9866322 DOI: 10.3390/ijms24021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
Early diagnosis is essential for completely eradicating skin cancer and maximizing patients' clinical benefits. Emerging optical imaging modalities such as reflectance confocal microscopy (RCM), optical coherence tomography (OCT), magnetic resonance imaging (MRI), near-infrared (NIR) bioimaging, positron emission tomography (PET), and their combinations provide non-invasive imaging data that may help in the early detection of cutaneous tumors and surgical planning. Hence, they seem appropriate for observing dynamic processes such as blood flow, immune cell activation, and tumor energy metabolism, which may be relevant for disease evolution. This review discusses the latest technological and methodological advances in imaging techniques that may be applied for skin cancer detection and monitoring. In the first instance, we will describe the principle and prospective clinical applications of the most commonly used imaging techniques, highlighting the challenges and opportunities of their implementation in the clinical setting. We will also highlight how imaging techniques may complement the molecular and histological approaches in sharpening the non-invasive skin characterization, laying the ground for more personalized approaches in skin cancer patients.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Surcel
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
17
|
Long-Term Psychosocial Consequences of Whole-Body Magnetic Resonance Imaging and Reporting of Incidental Findings in a Population-Based Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102356. [PMID: 36292045 PMCID: PMC9600583 DOI: 10.3390/diagnostics12102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Management of radiological incidental findings (IF) is of rising importance; however, psychosocial implications of IF reporting remain unclear. We compared long-term psychosocial effects between individuals who underwent whole-body magnetic resonance imaging (MRI) with and without reported IF, and individuals who did not undergo imaging. We used a longitudinal population-based cohort from Western Europe. Longitudinal analysis included three examinations (exam 1, 6 years prior to MRI; exam 2, MRI; exam 3, 4 years after MRI). Psychosocial outcomes included PHQ-9 (Patient Health Questionnaire), DEEX (Depression and Exhaustion Scale), PSS-10 (Perceived Stress Scale) and a Somatization Scale. Univariate analyses and adjusted linear mixed models were calculated. Among 855 included individuals, 25% (n = 212) underwent MRI and 6% (n = 50) had at least one reported IF. Compared to MRI participants, non-participants had a higher psychosocial burden indicated by PHQ-9 in exam 1 (3.3 ± 3.3 vs. 2.5 ± 2.3) and DEEX (8.6 ± 4.7 vs. 7.7 ± 4.4), Somatization Scale (5.9 ± 4.3 vs. 4.8 ± 3.8) and PSS-10 (14.7 ± 5.7 vs. 13.7 ± 5.3, all p < 0.05) in exam 3. MRI participation without IF reporting was significantly associated with lower values of DEEX, PHQ-9 and Somatization Scale. There were no significant differences at the three timepoints between MRI participants with and without IF. In conclusion, individuals who voluntarily participated in whole-body MRI had less psychosocial burden and imaging and IF reporting were not associated with adverse long-term psychosocial consequences. However, due to the study design we cannot conclude that the MRI exam itself represented a beneficial intervention causing improvement in mental health scores.
Collapse
|
18
|
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H. The role of MRI in prostate cancer: current and future directions. MAGMA (NEW YORK, N.Y.) 2022; 35:503-521. [PMID: 35294642 PMCID: PMC9378354 DOI: 10.1007/s10334-022-01006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerging technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer and provide insights into its potential clinical roles from the radiologist's perspective. In each of the sections, specific roles of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established material related to MRI and the introduction of recent advancements on MRI.
Collapse
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
19
|
Colombo A, Bombelli L, Summers PE, Saia G, Zugni F, Marvaso G, Grimm R, Jereczek-Fossa BA, Padhani AR, Petralia G. Effects of Sex and Age on Fat Fraction, Diffusion-Weighted Image Signal Intensity and Apparent Diffusion Coefficient in the Bone Marrow of Asymptomatic Individuals: A Cross-Sectional Whole-Body MRI Study. Diagnostics (Basel) 2021; 11:diagnostics11050913. [PMID: 34065459 PMCID: PMC8161193 DOI: 10.3390/diagnostics11050913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023] Open
Abstract
We aimed to describe the relationships between the relative fat fraction (%FF), muscle-normalized diffusion-weighted (DW) image signal intensity and water apparent diffusion coefficient (ADC), sex and age for normal bone marrow, in the normal population. Our retrospective cohort consisted of 100 asymptomatic individuals, equally divided by sex and 10-year age groups, who underwent whole-body MRI at 1.5 T for early cancer detection. Semi-automated segmentation of global bone marrow volume was performed using the DW images and the resulting segmentation masks were projected onto the ADC and %FF maps for extraction of parameter values. Differences in the parameter values between sexes at age ranges were assessed using the Mann–Whitney and Kruskal–Wallis tests. The Spearman correlation coefficient r was used to assess the relationship of each imaging parameter with age, and of %FF with ADC and normalized DW signal intensity values. The average %FF of normal bone marrow was 65.6 ± 7.2%, while nSIb50, nSIb900 and ADC were 1.7 ± 0.5, 3.2 ± 0.9 and 422 ± 67 μm2/s, respectively. The bone marrow %FF values increased with age in both sexes (r = 0.63 and r = 0.64, respectively, p < 0.001). Values of nSIb50 and nSIb900 were higher in younger women compared to men of the same age groups (p < 0.017), but this difference decreased with age. In our cohort of asymptomatic individuals, the values of bone marrow relative %FF, normalized DW image signal intensity and ADC indicate higher cellularity in premenopausal women, with increasing bone marrow fat with aging in both sexes.
Collapse
Affiliation(s)
- Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
- Correspondence:
| | - Luca Bombelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Paul E. Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Giulia Saia
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Robert Grimm
- MR Applications Pre-Development, Siemens Healthcare, 91052 Erlangen, Germany;
| | - Barbara A. Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Anwar R. Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood HA6 2RN, UK;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|