1
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
2
|
Fritzsche S, Strauss C, Scheller C, Leisz S. Nimodipine Treatment Protects Auditory Hair Cells from Cisplatin-Induced Cell Death Accompanied by Upregulation of LMO4. Int J Mol Sci 2022; 23:ijms23105780. [PMID: 35628594 PMCID: PMC9145067 DOI: 10.3390/ijms23105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Ototoxicity is one of the main dose-limiting side effects of cisplatin chemotherapy and impairs the quality of life of tumor patients dramatically. Since there is currently no established standard therapy targeting hearing loss in cisplatin treatment, the aim of this study was to investigate the effect of nimodipine and its role in cell survival in cisplatin-associated hearing cell damage. To determine the cytotoxic effect, the cell death rate was measured using undifferentiated and differentiated UB/OC−1 and UB/OC−2 cells, after nimodipine pre-treatment and stress induction by cisplatin. Furthermore, immunoblot analysis and intracellular calcium measurement were performed to investigate anti-apoptotic signaling, which was associated with a reduced cytotoxic effect after nimodipine pre-treatment. Cisplatin’s cytotoxic effect was significantly attenuated by nimodipine up to 61%. In addition, nimodipine pre-treatment counteracted the reduction in LIM Domain Only 4 (LMO4) by cisplatin, which was associated with increased activation of Ak strain transforming/protein kinase B (Akt), cAMP response element-binding protein (CREB), and signal transducers and activators of transcription 3 (Stat3). Thus, nimodipine presents a potentially well-tolerated substance against the ototoxicity of cisplatin, which could result in a significant improvement in patients’ quality of life.
Collapse
|
3
|
Tong J, Li J, Zhang QS, Yang JK, Zhang L, Liu HY, Liu YZ, Yuan JW, Su XM, Zhang XX, Jiao BH. Delayed cognitive deficits can be alleviated by calcium antagonist nimodipine by downregulation of apoptosis following whole brain radiotherapy. Oncol Lett 2018; 16:2525-2532. [PMID: 30013647 PMCID: PMC6036595 DOI: 10.3892/ol.2018.8968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/29/2018] [Indexed: 01/30/2023] Open
Abstract
Radiation therapy is important for the comprehensive treatment of intracranial tumors. However, the molecular mechanisms underlying the pathogenesis of delayed cognitive dysfunction are not well-defined and effective treatments or prevention measures remain insufficient. In the present study, 60 adult male Wistar rats were randomly divided into three groups, which included a control, whole brain radiotherapy (WBRT) (single dose of 30 Gy of WBRT) and nimodipine (single dose of 30 Gy of WBRT followed by nimodipine injection intraperitoneally) groups. The rats were sacrificed 7 days or 3 months following irradiation. At 3 months, the Morris water maze test was used to assess spatial learning and memory function in rats. The results demonstrated that the WBRT group demonstrated a significantly impaired cognitive performance, decreased numbers of hippocampal Cornu Ammonis (CA)1 neurons and upregulated expression of caspase-3 in the dentate gyrus compared with those in the control and nimodipine groups. Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the WBRT group exhibited increased ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 compared with that in control and nimodipine groups on day 7 following irradiation. However, the WBRT group exhibited decreased levels of brain-derived neurotrophic factor (BDNF) compared with that in control and nimodipine groups at 3 months following brain irradiation. The levels of growth-associated protein 43 and amyloid precursor protein between the nimodipine group and WBRT group were not statistically significant. The present study demonstrated that neuron apoptosis may lead to delayed cognitive deficits in the hippocampus, in response to radiotherapy. The cognitive impairment may be alleviated in response to a calcium antagonist nimodipine. The molecular mechanisms involved in nimodipine-mediated protection against cognitive decline may involve the regulation of Bax/Bcl-2 and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jing Tong
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Juan Li
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Qiu-Shi Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hai-Ying Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ying-Zi Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jiang-Wei Yuan
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu-Ming Su
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xue-Xin Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Bao-Hua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
4
|
Kizmazoglu C, Aydin HE, Sevin IE, Kalemci O, Yüceer N, Atasoy MA. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats. J Korean Neurosurg Soc 2015; 58:508-12. [PMID: 26819684 PMCID: PMC4728087 DOI: 10.3340/jkns.2015.58.6.508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
Background Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.
Collapse
Affiliation(s)
- Ceren Kizmazoglu
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Hasan Emre Aydin
- Department of Neurosurgery, Eskisehir State Hospital, Eskisehir, Turkey.; Department of Pharmacology, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Ismail Ertan Sevin
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Orhan Kalemci
- Department of Neurosurgery, Dokuz Eylul University, School of Medicine Hospital, Izmir, Turkey
| | - Nurullah Yüceer
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Metin Ant Atasoy
- Department of Neurosurgery, Eskişehir Osmangazi University School of Medicine Hospital, Eskisehir, Turkey
| |
Collapse
|
5
|
Gong J, Gong S, Zhang M, Zhang L, Hu Y, Liu Y, Li W. Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats. Amino Acids 2014; 46:1537-45. [PMID: 24643365 DOI: 10.1007/s00726-014-1723-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Our previous study has shown that cerebral ischemic preconditioning (CIP) can up-regulate the expression of glial glutamate transporter-1 (GLT-1) during the induction of brain ischemic tolerance in rats. The present study was undertaken to further explore the uptake activity of GLT-1 in the process by observing the changes in the concentration of extracellular glutamate with cerebral microdialysis and high-performance liquid chromatography. The results showed that a significant pulse of glutamate concentration reached the peak value of sevenfold of the basal level after lethal ischemic insult, which was associated with delayed neuronal death in the CA1 hippocampus. When the rats were pretreated 2 days before the lethal ischemic insult with CIP which protected the pyramidal neurons against delayed neuronal death, the peak value of glutamate concentration decreased to 3.9 fold of the basal level. Furthermore, pre-administration of dihydrokainate, an inhibitor of GLT-1, prevented the protective effect of CIP on ischemia-induced CA1 cell death. At the same time, compared with the CIP + Ischemia group, the peak value of glutamate concentration significantly increased and reached sixfold of the basal level. These results indicate that CIP induced brain ischemic tolerance via up-regulating GLT-1 uptake activity for glutamate and then decreasing the excitotoxicity of glutamate.
Collapse
Affiliation(s)
- Jianxue Gong
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|
7
|
Hein M, Zoremba N, Bleilevens C, Bruells C, Rossaint R, Roehl AB. Levosimendan limits reperfusion injury in a rat middle cerebral artery occlusion (MCAO) model. BMC Neurol 2013; 13:106. [PMID: 23937651 PMCID: PMC3750823 DOI: 10.1186/1471-2377-13-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/08/2013] [Indexed: 12/30/2022] Open
Abstract
Background Neuroprotective strategies in ischemic stroke are an important challenge in clinical and experimental research as an adjunct to reperfusion therapy that may reduce neurologic injury and improve outcome. The neuroprotective properties of levosimendan in traumatic brain injury in vitro, transient global brain ischemia and focal spinal cord ischemia suggest the potential for similar effects in transient brain ischemia. Methods Transient brain ischemia was induced for 60 min by intraluminal occlusion of the middle cerebral artery in 40 male Wistar rats under general anesthesia with s-ketamine and xylazine and with continuous monitoring of their blood pressure and cerebral perfusion. Five minutes before inducing reperfusion, a levosimendan bolus (24 μg kg -1) was administered over a 20 minute period. Infarct size, brain swelling, neurological function and the expression of inflammatory markers were quantified 24 hours after reperfusion. Results Although levosimendan limited the infarct size and brain swelling by 40% and 53%, respectively, no effect on neurological outcome or mortality could be demonstrated. Upregulation of tumor necrosis factor α and intercellular adhesion molecule 1 was significantly impeded. Cerebral blood flow during reperfusion was significantly reduced as a consequence of sustained autoregulation. Conclusions Levosimendan demonstrated significant neuroprotective properties in a rat model of transient brain ischemia by reducing reperfusion injury.
Collapse
|
8
|
Zhang XL, Zheng SL, Dong FR, Wang ZM. Nimodipine improves regional cerebral blood flow and suppresses inflammatory factors in the hippocampus of rats with vascular dementia. J Int Med Res 2013; 40:1036-45. [PMID: 22906276 DOI: 10.1177/147323001204000322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To study the effect of nimodipine on hippocampal regional cerebral blood flow (rCBF) and proinflammatory cytokines in rats with experimental vascular dementia. METHODS Male Sprague Dawley rats were randomly divided into four groups (n = 15/group): sham operated controls (group A); focal cerebral ischaemia (group B); vascular dementia (group C); and vascular dementia treated with 20 mg/kg nimodipine daily (group D). The Morris water maze test evaluated learning and memory, and magnetic resonance perfusion-weighted imaging was used to measure rCBF. Hippocampal levels of nuclear factor-κB (NF-κB), tumour necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) were measured. RESULTS Compared with group C, rats in group D demonstrated significantly improved learning ability and significantly increased hippocampal rCBF. The levels of NF-κB, TNF-α and IL-1β were significantly lower in group D than in group C. Hippocampal nerve cell morphology was abnormal in group C but near normal in group D. CONCLUSIONS Nimodipine improved the symptoms of cognitive impairment, increased rCBF, reduced hippocampal cytokine levels and alleviated neuronal injury in the hippocampus of rats with experimental vascular dementia.
Collapse
Affiliation(s)
- X-L Zhang
- Department of Radiology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning Province, China
| | | | | | | |
Collapse
|
9
|
Park DA, Kim SW, Lee SM, Ju CI, Kim CG, Jang SJ. Paraspinal Muscle Sparing Versus Percutaneous Screw Fixation: A Comparative Enzyme Study of Tissue Injury during the Treatment of L4-L5 Spondylolisthesis. KOREAN JOURNAL OF SPINE 2012; 9:321-5. [PMID: 25983840 PMCID: PMC4430557 DOI: 10.14245/kjs.2012.9.4.321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/22/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
Objective Screw fixation via the paraspinal muscle sparing approach and by percutaneous screw fixation are known to diminish the risk of complications, such as, iatrogenic muscle injury as compared with the conventional midline approach. The purpose of this study was to evaluate tissue injury markers after these less traumatic screw fixation techniques for the treatment of L4-L5 spondylolisthesis. Methods Twenty-two patients scheduled for posterior lumbar interbody fusion (PLIF) at the L4-L5 segment for spondylolisthesis were prospectively studied. Patients were divided into two groups by screw fixation technique (Group I: paraspinal muscle sparing approach and Group II: percutaneous screw fixation). Levels of serum enzymes representing muscle injury (CK-MM and Troponin C type 2 fast), pro-inflammatory cytokine (IL-8), and anti-inflammatory cytokine (IL-1ra) were analyzed using ELISA techniques on the day of the surgery and 1, 3, and 7 days after the surgery. Results Serum CK-MM, Troponic C type 2 fast (TNNC2), and IL-1ra levels were significantly elevated in Group I on postoperative day 1 and 3, and returned to preoperative levels on postoperative day 7. No significant intergroup difference was found between IL-8 levels despite higher concentrations in Group I on postoperative day 1 and 3. Conclusion This study shows that percutaneous screw fixation procedure is the preferable minimally invasive technique in terms of minimizing muscle injury associated with L4-L5 spondylolisthesis.
Collapse
Affiliation(s)
- Dong Am Park
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Seok Won Kim
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sung Myung Lee
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Chang Il Ju
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Chong Gue Kim
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Suk Jung Jang
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Roehl AB, Zoremba N, Kipp M, Schiefer J, Goetzenich A, Bleilevens C, Kuehn-Velten N, Tolba R, Rossaint R, Hein M. The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia. BMC Neurol 2012; 12:81. [PMID: 22920500 PMCID: PMC3492141 DOI: 10.1186/1471-2377-12-81] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroprotective strategies after cardiopulmonary resuscitation are currently the focus of experimental and clinical research. Levosimendan has been proposed as a promising drug candidate because of its cardioprotective properties, improved haemodynamic effects in vivo and reduced traumatic brain injury in vitro. The effects of levosimendan on brain metabolism during and after ischaemia/hypoxia are unknown. METHODS Transient cerebral ischaemia/hypoxia was induced in 30 male Wistar rats by bilateral common carotid artery clamping for 15 min and concomitant ventilation with 6% O2 during general anaesthesia with urethane. After 10 min of global ischaemia/hypoxia, the rats were treated with an i.v. bolus of 24 μg kg-1 levosimendan followed by a continuous infusion of 0.2 μg kg-1 min-1. The changes in the energy-related metabolites lactate, the lactate/pyruvate ratio, glucose and glutamate were monitored by microdialysis. In addition, the effects on global haemodynamics, cerebral perfusion and autoregulation, oedema and expression of proinflammatory genes in the neocortex were assessed. RESULTS Levosimendan reduced blood pressure during initial reperfusion (72 ± 14 vs. 109 ± 2 mmHg, p = 0.03) and delayed flow maximum by 5 minutes (p = 0.002). Whereas no effects on time course of lactate, glucose, pyruvate and glutamate concentrations in the dialysate could be observed, the lactate/pyruvate ratio during initial reperfusion (144 ± 31 vs. 77 ± 8, p = 0.017) and the glutamate release during 90 minutes of reperfusion (75 ± 19 vs. 24 ± 28 μmol·L-1) were higher in the levosimendan group. The increased expression of IL-6, IL-1ß TNFα and ICAM-1, extend of cerebral edema and cerebral autoregulation was not influenced by levosimendan. CONCLUSION Although levosimendan has neuroprotective actions in vitro and on the spinal cord in vivo and has been shown to cross the blood-brain barrier, the present results showed that levosimendan did not reduce the initial neuronal injury after transient ischaemia/hypoxia.
Collapse
Affiliation(s)
- Anna B Roehl
- Department of Anaesthesiology, RWTH Aachen University Hospital, Pauwelstrasse 30, Aachen, D-52074, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|