1
|
Jiang T, Bai X, Li M. Advances in the Development of Bacterial Bioluminescence Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:265-288. [PMID: 38640069 DOI: 10.1146/annurev-anchem-061622-034229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful method for visualizing biological processes and tracking cells. Engineered bioluminescent bacteria that utilize luciferase-catalyzed biochemical reactions to generate luminescence have become useful analytical tools for in vitro and in vivo bacterial imaging. Accordingly, this review initially introduces the development of engineered bioluminescent bacteria that use different luciferase-luciferin pairs as analytical tools and their applications for in vivo BLI, including real-time bacterial tracking of infection, probiotic investigation, tumor-targeted therapy, and drug screening. Applications of engineered bioluminescent bacteria as whole-cell biosensors for sensing biological changes in vitro and in vivo are then discussed. Finally, we review the optimizations and future directions of bioluminescent bacteria for imaging. This review aims to provide fundamental insights into bacterial BLI and highlight the potential development of this technique in the future.
Collapse
Affiliation(s)
- Tianyu Jiang
- 1Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiaoyu Bai
- 1Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
- 2School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Minyong Li
- 3Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China;
| |
Collapse
|
2
|
Chu J, Yu X, Jiang G, Tao Y, Wu W, Han S. Bacterial imaging in tumour diagnosis. Microb Biotechnol 2024; 17:e14474. [PMID: 38808743 PMCID: PMC11135020 DOI: 10.1111/1751-7915.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
Some bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), have an inherent ability to locate solid tumours, making them a versatile platform that can be combined with other tools to improve the tumour diagnosis and treatment. In anti-cancer therapy, bacteria function by carrying drugs directly or expressing exogenous therapeutic genes. The application of bacterial imaging in tumour diagnosis, a novel and promising research area, can indeed provide dynamic and real-time monitoring in both pre-treatment assessment and post-treatment detection. Different imaging techniques, including optical technology, acoustic imaging, magnetic resonance imaging (MRI) and nuclear medicine imaging, allow us to observe and track tumour-associated bacteria. Optical imaging, including bioluminescence and fluorescence, provides high-sensitivity and high-resolution imaging. Acoustic imaging is a real-time and non-invasive imaging technique with good penetration depth and spatial resolution. MRI provides high spatial resolution and radiation-free imaging. Nuclear medicine imaging, including positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide information on the distribution and dynamics of bacterial population. Moreover, strategies of synthetic biology modification and nanomaterial engineering modification can improve the viability and localization ability of bacteria while maintaining their autonomy and vitality, thus aiding the visualization of gut bacteria. However, there are some challenges, such as the relatively low bacterial abundance and heterogeneously distribution within the tumour, the high dimensionality of spatial datasets and the limitations of imaging labeling tools. In summary, with the continuous development of imaging technology and nanotechnology, it is expected to further make in-depth study on tumour-associated bacteria and develop new bacterial imaging methods for tumour diagnosis.
Collapse
Affiliation(s)
- Jian Chu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Xiang Yu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Gaofei Jiang
- Key Lab of Organic‐Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Co., Ltd.ShanghaiChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| |
Collapse
|
3
|
Ahmed SG, Oliva G, Shao M, Mekalanos JJ, Brenner GJ. Culture of attenuated Salmonella Typhimurium VNP20009 in animal-product-free media does not alter schwannoma growth control. Hum Vaccin Immunother 2023; 19:2262639. [PMID: 37786375 PMCID: PMC10549203 DOI: 10.1080/21645515.2023.2262639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Schwannomas are slow-growing benign peripheral nerve sheath tumors derived from Schwann-lineage cells that develop in association with NF2-related schwannomatosis (NF2) and schwannomatosis (NF3), as well as spontaneously. Individuals affected with NF2 and NF3 have multiple schwannomas with tumors arising throughout life. Surgical resection, the standard management, is limited in scope and efficacy and is itself associated with significant morbidity. We have previously shown that direct intratumoral injection of attenuated Salmonella Typhimurium (S. Typhimurium), strain VNP20009, showed a potent anti-tumor effect in preclinical NF-2 schwannoma models. The United States Federal Drug Administration (FDA) requires that bacterial products utilized in clinical trials be produced without exposure to animal-derived-products. In this context, we developed, characterized, and tested the antitumor efficacy of an attenuated S. Typhimurium serially passaged in animal-product-free media, naming it VNP20009-AF for "VNP20009-animal-product-free." Our in vitro data did not indicate any significant changes in the viability, motility, or morphology of VNP20009-AF, compared to its parental strain. In vivo efficacy data demonstrated that VNP20009-AF and VNP20009 controlled tumor growth to the same degree in both human NF2-schwannoma xenograft and murine-NF2 schwannoma allograft models. Together, these data support the use of VNP20009-AF for the translation of bacterial schwannoma therapy into clinical trials.
Collapse
Affiliation(s)
- Sherif G. Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Oliva
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Manlin Shao
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Gary J. Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Investigational Microbiological Therapy for Glioma. Cancers (Basel) 2022; 14:cancers14235977. [PMID: 36497459 PMCID: PMC9736089 DOI: 10.3390/cancers14235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.
Collapse
|
5
|
Intratumoral injection of schwannoma with attenuated Salmonella typhimurium induces antitumor immunity and controls tumor growth. Proc Natl Acad Sci U S A 2022; 119:e2202719119. [PMID: 35675425 PMCID: PMC9214496 DOI: 10.1073/pnas.2202719119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Schwannomas are slow-growing benign neoplasms that develop throughout the body causing pain, sensory/motor dysfunction, and death. Because bacterial immunotherapy has been used in the treatment of some malignant neoplasms, we evaluated attenuated Salmonella typhimurium strains as immunotherapies for benign murine schwannomas. Several bacterial strains were tested, including VNP20009, a highly attenuated strain that was previously shown to be safe in human subjects with advanced malignant neoplasms, and a VNP20009 mutant that was altered in motility and other properties that included adherence and invasion of cultured mammalian cells. VNP20009 controlled tumor growth in two murine schwannoma models and induced changes in cytokine and immune effector cell profiles that were consistent with induction of enhanced innate and adaptive host immune responses compared with controls. Intratumoral (i.t.) injection of S. typhimurium led to tumor cell apoptosis, decreased tumor angiogenesis, and lower growth of the injected schwannoma tumors. Invasive VNP20009 was significantly more efficacious than was a noninvasive derivative in controlling the growth of injected tumors. Bacterial treatment apparently induced systemic antitumor immunity in that the growth of rechallenge schwannomas implanted following primary bacterial treatment was also reduced. Checkpoint programmed death-1 (PD-1) blockade induced by systemic administration of anti-PD-1 antibodies controlled tumor growth to the same degree as i.t. injection of S. typhimurium, and together, these two therapies had an additive effect on suppressing schwannoma growth. These experiments represent validation of a bacterial therapy for a benign neoplasm and support development of S. typhimurium VNP20009, potentially in combination with PD-1 inhibition, as a schwannoma immunotherapy.
Collapse
|
6
|
Genetically-engineered Salmonella typhimurium expressing TIMP-2 as a therapeutic intervention in an orthotopic glioma mouse model. Cancer Lett 2018; 433:140-146. [PMID: 29959056 DOI: 10.1016/j.canlet.2018.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Glioma is one of the most devastating and refractory cancers. The main factors underlying therapeutic failure include extremely invasive characteristics and lack of effective methods for drug delivery. Attenuated Salmonella strains presented a high concentration of tumor targets in various types of cancer models, suggesting a role as potential vectors for drug delivery. In this study, we genetically engineered an attenuated strain of Salmonella as an anti-invasive vector for the targeted delivery and expression of tissue inhibitor of metalloproteinases 2 (TIMP-2) in an orthotopic nude mouse model of glioma. The bioluminescence signals related to tumor size significantly declined in the TIMP-2-expressing Salmonella (SLpTIMP-2)-treated group compared with the control group. Compared with the control group with a survival rate of an average of 33 days, the SLpTIMP-2 group showed an extended survival rate by nearly 60% and lasted an average period of 53 days with TIMP-2 induction. These results indicated the promising therapeutic potential of S. typhimurium for targeted delivery and secretion of TIMP-2 in glioma.
Collapse
|
7
|
Li CH, Lim SH, Ryu HH, Moon KS, Jung TY, Jung S. Enhancement of radiosensitivity by inhibition of c-Jun N-terminal kinase activity in a Lewis lung carcinoma‑bearing subcutaneous tumor mouse model. Oncol Rep 2016; 36:3397-3404. [PMID: 27779695 DOI: 10.3892/or.2016.5204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Stereotactic radiosurgery has been recognized as an effective treatment approach for metastatic brain tumors. By increasing the sensitivity of the tumor to radiation and decreasing the marginal dose, it is possible to improve therapeutic efficacy and decrease side-effects. In radiation-induced cells, c-Jun N-terminal kinase (JNK) signaling mediates the phosphorylation of H2AX, which indicates DNA damage sensitivity and modulates the effect of radiation. Lewis lung cancer (LLC) and breast cancer (4T1) cells were irradiated with a Gamma Knife in cell culture tubes. To evaluate the relationship between radiosensitivity and JNK activity, clonogenic assay was performed. DNA damage response was estimated by γH2AX focus formation assay and apoptosis‑related protein levels were assessed by western blotting. The mice were subcutaneously inoculated with LLC cells, and irradiated concomitantly with JNK inhibitor treatment. The effect of the JNK inhibitor was investigated by tumor volumetry and immunohistochemistry. γH2AX expression, which mediates repair of radiation‑induced DNA damage, was reduced in the cancer cell group pretreated with the JNK inhibitor. This finding shows that JNK inhibition may increase the radiosensitivity in radiated lung and breast cancer cells. For the in vivo study, irradiated tumor growth was significantly delayed in the JNK inhibitor-treated mouse group. Blockade of JNK signaling decreased γH2AX expression and increased apoptosis in the radiation-induced cancer cells. JNK inhibitor may be useful for enhancing the radiosensitivity of lung and breast cancer cells and improving the treatment efficacy of radiosurgical approaches for metastatic brain tumors.
Collapse
Affiliation(s)
- Chun-Hao Li
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| | - Sa-Hoe Lim
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| | - Hyang-Hwa Ryu
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 519-763, Republic of Korea
| |
Collapse
|
8
|
Diagnosis of cancer multidrug resistance by bacterium-mediated imaging. Med Hypotheses 2016; 89:11-5. [DOI: 10.1016/j.mehy.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
|
9
|
Chen JQ, Zhan YF, Wang W, Jiang SN, Li XY. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma. Onco Targets Ther 2015; 8:2555-63. [PMID: 26451114 PMCID: PMC4592054 DOI: 10.2147/ott.s86899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA) in advanced stage of glioma. Materials and methods The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA) (n=12), negative control group (SL) (n=12), and control group (phosphate-buffered saline [PBS]) (n=12). In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment) postimplantation. All rats underwent MRI (magnetic resonance imaging) and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed. Results Advanced stage glioma was detected at 21 days postimplantation. Bioluminescence showed that the engineered S. typhimurium accumulated in glioma tumors and disappeared in the normal reticuloendothelial tissues 3 days after intravenous injection. MRI showed that the tumor volume in the S. typhimurium with ClyA group were significantly reduced compared to the bacteria alone and no bacteria groups 7 days post-doxycycline treatment (P<0.05), while the necrotic tumor volume in the S. typhimurium with ClyA group and S. typhimurium alone group increased significantly compared to the control group (P<0.01). In addition, the survival time was significantly prolonged in the bacteria-treated group compared to the PBS-treated control group (P<0.01). Conclusion The engineered S. typhimurium can significantly induce cancer cell apoptosis in the tumor center and inhibit cancer cell proliferation in the outer zone of advanced glioma tumor, leading to a prolonged survival time in rats. In addition, the engineered S. typhimurium that carried the antitumor and imaging genes controlled by the TetR-regulated promoter have high delivery efficiency with tolerable side effects in rats.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yue-Fu Zhan
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, People's Republic of China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sheng-Nan Jiang
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, People's Republic of China ; Department of Nuclear Medicine, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, People's Republic of China
| | - Xiang-Ying Li
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, People's Republic of China
| |
Collapse
|