1
|
S-15176 Difumarate Salt Can Impair Mitochondrial Function through Inhibition of the Respiratory Complex III and Permeabilization of the Inner Mitochondrial Membrane. BIOLOGY 2022; 11:biology11030380. [PMID: 35336754 PMCID: PMC8945000 DOI: 10.3390/biology11030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
S-15176 difumarate salt, a derivative of the anti-ischemic metabolic drug trimetazidine, has been intensively studied for its impact on cellular metabolism in animal models of ischemia-reperfusion injury of the liver, heart, spinal cord, and other organs. Despite evidence of some reduction in oxidative damage to cells, the results of therapy with S-15176 have been mostly disappointing, possibly because of the lack of data on its underlying mechanisms. Here, we aimed to investigate in more detail the role of complexes I-IV of the electron transport chain and membrane permeability transition in mitochondrial toxicity associated with S-15176. Using rat thymocyte and liver mitochondria, we demonstrated that: (1) acute exposure to S-15176 (10 to 50 μM) dose-dependently decreased the mitochondrial membrane potential; (2) S-15176 suppressed the ADP-stimulated (State 3) and uncoupled (State 3UDNP) respiration of mitochondria energized with succinate or malate/glutamate, but not ascorbate/TMPD, and increased the resting respiration (State 4) when using all the substrate combinations; (3) S-15176 directly inhibited the activity of the respiratory complex III; (4) low doses of S-15176 diminished the rate of H2O2 production by mitochondria; (5) at concentrations of above 30 μM, S-15176 reduced calcium retention capacity and contributed to mitochondrial membrane permeabilization. Taken together, these findings suggest that S-15176 at tissue concentrations reached in animals can impair mitochondrial function through suppression of the cytochrome bc1 complex and an increase in the nonspecific membrane permeability.
Collapse
|
2
|
Belosludtseva NV, Starinets VS, Pavlik LL, Mikheeva IB, Dubinin MV, Belosludtsev KN. The Effect of S-15176 Difumarate Salt on Ultrastructure and Functions of Liver Mitochondria of C57BL/6 Mice with Streptozotocin/High-Fat Diet-Induced Type 2 Diabetes. BIOLOGY 2020; 9:biology9100309. [PMID: 32987717 PMCID: PMC7598715 DOI: 10.3390/biology9100309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Type II diabetes mellitus (T2DM) is one of the most common diseases, which currently represents a major medical and social problem due to the chronic course, high rates of disability and mortality among patients. Mitochondria of the liver and other vital organs are one of the main targets of T2DM at the intracellular level. The pathological changes in the structure of mitochondria, hyperproduction of reactive oxygen species by the organelles, disorders in mitochondrial transport systems and ATP synthesis are now widely recognized as important factors in the development of diabetes. Therefore, treatment strategies to attenuate mitochondrial injury may result in cellular reprogramming and alleviation of the diabetes-related pathological complications. The aim of present work was to investigate the possible protective effect of S-15176, a potent derivative of the anti-ischemic agent trimetazidine, against mitochondrial damage in the liver of mice with experimental T2DM. The data indicate that S-15176 attenuates mitochondrial dysfunction and ultrastructural abnormalities in the liver of T2DM mice. The mechanisms underlying the protective effect of S-15176 are related to the stimulation of mitochondrial biogenesis and the inhibition of lipid peroxidation in the organelles. One may assume that the compound acts as a mitochondria-targeted metabolic reprogramming agent in T2DM. Abstract S-15176, a potent derivative of the anti-ischemic agent trimetazidine, was reported to have multiple effects on the metabolism of mitochondria. In the present work, the effect of S-15176 (1.5 mg/kg/day i.p.) on the ultrastructure and functions of liver mitochondria of C57BL/6 mice with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with a low-dose streptozotocin injection was examined. An electron microscopy study showed that T2DM induced mitochondrial swelling and a reduction in the number of liver mitochondria. The number of mtDNA copies in the liver in T2DM decreased. The expression of Drp1 slightly increased, and that of Mfn2 and Opa1 somewhat decreased. The treatment of diabetic animals with S-15176 prevented the mitochondrial swelling, normalized the average mitochondrial size, and significantly decreased the content of the key marker of lipid peroxidation malondialdehyde in liver mitochondria. In S-15176-treated T2DM mice, a two-fold increase in the expression of the PGC-1α and a slight decrease in Drp 1 expression in the liver were observed. The respiratory control ratio, the level of mtDNA, and the number of liver mitochondria of S-15176-treated diabetic mice tended to restore. S-15176 did not affect the decrease in expression of Parkin and Opa1 in the liver of diabetic animals, but slightly suppressed the expression of these proteins in the control. The modulatory effect of S-15176 on dysfunction of liver mitochondria in T2DM can be related to the stimulation of mitochondrial biogenesis and the inhibition of lipid peroxidation in the organelles.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Correspondence:
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| | - Lyubov L. Pavlik
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| | - Konstantin N. Belosludtsev
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| |
Collapse
|
3
|
Cikler-Dulger E, Sogut I. Investigation of the protective effects of boric acid on ethanol induced kidney injury. Biotech Histochem 2020; 95:186-193. [DOI: 10.1080/10520295.2019.1662086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- E. Cikler-Dulger
- Faculty of Medicine, Department of Histology and Embryology, Istanbul Bilim University, Turkey
| | - I. Sogut
- Vocational School of Health Services, Department of Medical Services and Techniques, Istanbul Bilim University, Turkey
| |
Collapse
|
4
|
Sogut I, Paltun SO, Tuncdemir M, Ersoz M, Hurdag C. The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 2017; 96:404-411. [PMID: 28898587 DOI: 10.1139/cjpp-2017-0487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The harmful use of alcohol is a worldwide problem involving all ages. This study aims to investigate chronic alcohol exposure related hepatotoxicity on the rat liver and possible hepatoprotective effects of boric acid. Rats were separated into 4 different groups: control, ethanol, ethanol+boric acid, and boric acid. We measured (i) malondialdehyde (MDA), total sialic acid (TSA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels, which are known to be the markers of alcohol damage; and also (ii) caspase-3, tumor necrosis factor-alpha (TNF-α), and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) as the markers of apoptosis. In the ethanol group, MDA, TSA, and TNF-α levels increased whereas SOD and CAT levels decreased compared with the control group. Ethanol+boric acid group MDA, TSA, caspase-3, and TNF-α levels decreased whereas SOD and CAT levels increased compared with the ethanol group. Using histopathological evaluation of light microscope images, immunohistochemical caspase-3 and TNF-α activity in the ethanol+boric acid group were shown to be decreased compared with that in the ethanol group. Our results revealed that ethanol is capable of triggering oxidative stress and apoptosis in the rat liver. We propose that boric acid is an effective compound in protecting the rat liver against ethanol.
Collapse
Affiliation(s)
- Ibrahim Sogut
- a Vocational School of Health Services, Istanbul Bilim University, Istanbul, Turkey
| | - Sıla Ozlem Paltun
- b Department of Histology and Embryology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Matem Tuncdemir
- c Department of Medical Biology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Melike Ersoz
- d Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Bilim University, Istanbul, Turkey
| | - Canan Hurdag
- b Department of Histology and Embryology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
5
|
Tunçdemir M, Ertürküner SP, Özçelik D. Investigation of lipid peroxidation and antiapoptotic effects of zinc aganist liver damage in diabetic rats. Hum Exp Toxicol 2016; 36:813-822. [DOI: 10.1177/0960327116666619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several mechanisms for the pathogenesis of diabetic complications have been proposed, one of which is abnormal zinc (Zn) homeostasis. Zn is necessary for proper liver function since it has important antioxidant, anti-inflammatory, and antiapoptotic properties. We aimed to investigate whether or not Zn has morphologically protective effect on diabetes-induced liver damage in rats. In addition, we have investigated the role of Zn supplementation on apoptosis, lipid peroxidation levels, and the distribution of metallothionein (MT) in diabetic liver tissue. Wistar albino rats were divided into four groups: control, Zn, diabetic, and Zn-diabetic group. Experimental diabetes was induced by a single-dose streptozotocin intraperitoneally and Zn was administrated via gastric gavage tube for 6 weeks. MT expressions were showed with immunohistochemical staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used for apoptosis. Also, Zn, MT, and malondialdehyde (MDA) levels were determined in liver of rats. MDA levels of the Zn-supplemented diabetic group was less than the diabetic group though MT levels were increased. The number of apoptotic cells per unit area was found to be significantly decreased in this group. In the Zn-supplemented diabetic group, fibrotic tissue density and the collagen tissue density were observed less than the diabetic group. MT immunoreactivity was observed less in Zn-supplemented diabetic group. In conculusion, the present study indicated that Zn has a potential in preventing or even repairing effect against diabetic damage of the liver cells by increasing expression of MT and by reducing the apoptotic cell death and the oxidative stress.
Collapse
Affiliation(s)
- M Tunçdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - SP Ertürküner
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - D Özçelik
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|