1
|
Phillips HW, Hect JL, Harford E, Pan E, Abel TJ. Comparison of magnetic resonance-guided laser interstitial thermal therapy corpus callosum ablation to open microsurgical corpus callosotomy: A single-center retrospective cohort study. Epilepsia Open 2024; 9:96-105. [PMID: 37766507 PMCID: PMC10839368 DOI: 10.1002/epi4.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Corpus callosotomy (CC) is an important treatment for atonic seizures in patients with generalized or multifocal drug-resistant epilepsy (DRE). Traditionally, CC is performed via an open microsurgical approach, but more recently, MR-guided stereotactic laser interstitial thermal therapy (LITT) corpus callosum ablation (CCA) has been developed to leverage the safety and minimally invasive nature of LITT. Given the recent adoption of CCA at select centers, how CCA compares to CC is unknown. We aim to compare the clinical seizure outcomes of CCA and CC after extended follow-up. METHODS We performed a retrospective cohort study to compare the effectiveness and safety of CC to CCA from 1994 to 2022. The primary outcome was a 50% reduction in target seizure. Secondary outcome measures were postoperative length of stay, adverse events, and other effectiveness metrics. Comparative statistics were executed using Stata. Normality for continuous variables was assessed, and parametric statistics were utilized as needed. Frequency was compared with chi-squared or Fischer's exact tests, when applicable. RESULTS Data from 47 operations performed on 36 patients were included in this study, of which 13 (36%) patients underwent 17 CCA. Patients who received CCA had similar rates of meaningful reduction (>50%) of atonic seizures as their CC counterparts (55% vs 70% P = 0.15). Patients undergoing CCA had significantly shorter hospitalizations than those receiving CC (2.5 vs 6.0 days P < 0.001). There was no significant difference in rates of postoperative complications between the groups, although the magnitude of the complication rates was lower in the CCA cohort (12% vs 28%). SIGNIFICANCE This early experience suggests CCA has similar outcomes to traditional CC, albeit with a shorter hospital stay. However, future studies are necessary to investigate the noninferiority between these two approaches. Large multicenter studies are necessary to investigate differences in adverse events and whether these findings generalize across other centers.
Collapse
Affiliation(s)
- H. Westley Phillips
- Department of NeurosurgeryStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Jasmine L. Hect
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Emily Harford
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Evelyn Pan
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Taylor J. Abel
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Lad Y, Jangam A, Carlton H, Abu-Ayyad M, Hadjipanayis C, Ivkov R, Zacharia BE, Attaluri A. Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT). Cancers (Basel) 2023; 15:4554. [PMID: 37760524 PMCID: PMC10526178 DOI: 10.3390/cancers15184554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Develop a treatment planning framework for neurosurgeons treating high-grade gliomas with LITT to minimize the learning curve and improve tumor thermal dose coverage. METHODS Deidentified patient images were segmented using the image segmentation software Materialize MIMICS©. Segmented images were imported into the commercial finite element analysis (FEA) software COMSOL Multiphysics© to perform bioheat transfer simulations. The laser probe was modeled as a cylindrical object with radius 0.7 mm and length 100 mm, with a constant beam diameter. A modeled laser probe was placed in the tumor in accordance with patient specific patient magnetic resonance temperature imaging (MRTi) data. The laser energy was modeled as a deposited beam heat source in the FEA software. Penne's bioheat equation was used to model heat transfer in brain tissue. The cerebrospinal fluid (CSF) was modeled as a solid with convectively enhanced conductivity to capture heat sink effects. In this study, thermal damage-dependent blood perfusion was assessed. Pulsed laser heating was modeled based on patient treatment logs. The stationary heat source and pullback heat source techniques were modeled to compare the calculated tissue damage. The developed bioheat transfer model was compared to MRTi data obtained from a laser log during LITT procedures. The application builder module in COMSOL Multiphysics© was utilized to create a Graphical User Interface (GUI) for the treatment planning framework. RESULTS Simulations predicted increased thermal damage (10-15%) in the tumor for the pullback heat source approach compared with the stationary heat source. The model-predicted temperature profiles followed trends similar to those of the MRTi data. Simulations predicted partial tissue ablation in tumors proximal to the CSF ventricle. CONCLUSION A mobile platform-based GUI for bioheat transfer simulation was developed to aid neurosurgeons in conveniently varying the simulation parameters according to a patient-specific treatment plan. The convective effects of the CSF should be modeled with heat sink effects for accurate LITT treatment planning.
Collapse
Affiliation(s)
- Yash Lad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ma’Moun Abu-Ayyad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Constantinos Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brad E. Zacharia
- Department of Neurosurgery, Pennsylvania State Health, Hershey, PA 17033, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
3
|
Lombardi S, Tortora D, Picariello S, Sudhakar S, De Vita E, Mankad K, Varadkar S, Consales A, Nobili L, Cooper J, Tisdall MM, D'Arco F. Intraoperative MRI Assessment of the Tissue Damage during Laser Ablation of Hypothalamic Hamartoma. Diagnostics (Basel) 2023; 13:2331. [PMID: 37510075 PMCID: PMC10378573 DOI: 10.3390/diagnostics13142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Laser ablation for treatment of hypothalamic hamartoma (HH) is a minimally invasive and effective technique used to destroy hamartomatous tissue and disconnect it from the functioning brain. Currently, the gold standard to evaluate the amount of tissue being "burned" is the use of heat maps during the ablation procedure. However, these maps have low spatial resolution and can be misleading in terms of extension of the tissue damage. The aim of this study is to use different MRI sequences immediately after each laser ablation and correlate the extension of signal changes with the volume of malacic changes in a long-term follow-up scan. During the laser ablation procedure, we imaged the hypothalamic region with high-resolution axial diffusion-weighted images (DWI) and T2-weighted images (T2WI) after each ablation. At the end of the procedure, we also added a post-contrast T1-weighted image (T1WI) of the same region. We then correlated the product of the maximum diameters on axial showing signal changes (acute oedema on T2WI, DWI restriction rim, DWI hypointense core and post-contrast T1WI rim) with the product of the maximum diameters on axial T2WI of the malacic changes in the follow-up scan, both as a fraction of the total area of the hamartoma. The area of the hypointense core on DWI acquired immediately after the laser ablation statistically correlated better with the final area of encephalomalacia, while the T2WI, hyperintense oedema, DWI rim and T1WI rim of enhancement tended to overestimate the encephalomalacic damage. In conclusion, the use of intraoperative sequences (in particular DWI) during laser ablation can give surgeons valuable information in real time about the effective heating damage on the hamartomatous tissue, with better spatial resolution in comparison to the thermal maps.
Collapse
Affiliation(s)
- Sophie Lombardi
- Radiodiagnostic Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Stefania Picariello
- Neuro-Oncology Unit, Department of Paediatric Oncology, Santobono-Pausilipon Children's Hospital, 80123 Naples, Italy
| | - Sniya Sudhakar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Enrico De Vita
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Sophia Varadkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alessandro Consales
- Department of Surgical Sciences, Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Jessica Cooper
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Martin M Tisdall
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Felice D'Arco
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
4
|
Airway Management with Leksell Frame in situ with or without Frontal Bar: A Mannequin Study. Can J Neurol Sci 2021; 49:579-582. [PMID: 34219628 DOI: 10.1017/cjn.2021.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The use of stereotactic headframes for neurosurgical procedures requiring targeted localization continues to grow with new advancements in technology and treatment modalities. A configuration of the Leksell stereotactic G frame with a straight front bar, useful in epilepsy and laser cases, almost completely obscures oral access and presents a significant airway challenge for the anesthetist. Although previous papers have suggested that the entire headframe should be removed during an airway emergency, we describe a novel method to remove only the front bar. METHODS We performed an observational mannequin study. Anesthesia personnel from a single center were asked to intubate a mannequin with the Leksell frame fully in situ and again with the front bar removed. In addition, the time to remove the entire frame versus only the front bar was investigated. RESULTS Eighteen anesthesia personnel participated in the study as well as four neurosurgeons. The average time to intubate the mannequin in the frame was 23.5 (11.4) seconds and with the front bar removed, 10.9 (2.5) seconds (p < 0.001). The average time taken to remove just the front bar by the neurosurgeons was 35.4 (7.3) seconds compared to an average of 83.3 (18.6) seconds to remove the headframe entirely (p < 0.001). CONCLUSION Our study demonstrates that intubating with the Leksell front bar in situ is possible with videolaryngoscopy under an ideal situation. More importantly, the removal of just the front bar is a simpler more streamlined approach requiring statistically less time to secure an airway.
Collapse
|
5
|
Abstract
Nearly 30% of epilepsy patients are refractory to medical therapy. Surgical management of epilepsy is an increasingly viable option for these patients. Although surgery has historically been used as a palliative option, improvements in technology and outcomes show its potential in certain subsets of patients. This article reviews the two main categories of surgical epilepsy treatment-resective surgery and neuromodulation. Resective surgery includes temporal lobe resections, extratemporal resections, laser interstitial thermal therapy, and disconnection procedures. We discuss the three main types of neuromodulation-vagal nerve stimulation, responsive neurostimulation, and deep brain stimulation for epilepsy. The history and indications are explored for each type of treatment. Given the myriad types of resection and neuromodulation techniques, patient selection is reviewed in detail, with a discussion on which patients are most likely to benefit from different treatment strategies. We also discuss outcomes with examples of the pertinent landmark trials and their results. Finally, complications and surgical technique are reviewed. As new indications emerge and patient selection is refined, surgical management will continue to evolve as an adjuvant therapy for epileptic patients.
Collapse
Affiliation(s)
- Shahjehan Ahmad
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan Khanna
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|