1
|
Romano A, De Giorgi S, Romano A, Moltoni G, Ascolese AM, Stoppacciaro A, Bozzao A. "Vanishing" glioblastoma: A case report and review of the literature. Radiol Case Rep 2024; 19:3276-3282. [PMID: 38812592 PMCID: PMC11133505 DOI: 10.1016/j.radcr.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Contrast enhancement resolution induced by corticosteroids is a phenomenon primarily associated with primary central nervous system lymphoma, while malignant brain gliomas usually maintain a consistent radiological appearance during systemic steroid treatment. Although rare, a few primary and metastatic intracranial lesions have shown similar radiographic changes following corticosteroid therapy. In the case of glioblastomas, corticosteroid therapy is commonly used to alleviate pressure effects from peritumoral edema, but its impact on contrast enhancement is not well-established. A few reported cases in the literature describe reduced contrast enhancement in glioblastomas after corticosteroid treatment. We present a case of corticosteroid-induced regression on imaging of glioblastoma evaluated at our institutionwith the intention to explore the pathogenesis of this response and discuss the therapeutic and prognostic implications of this discovery.
Collapse
Affiliation(s)
- Allegra Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Sara De Giorgi
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Giulia Moltoni
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | | | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Grigoreva DD, Zhidkova EM, Lylova ES, Enikeev AD, Kirsanov KI, Belitsky GA, Yakubovskaya MG, Lesovaya EA. Autophagy activation in breast cancer cells in vitro after the treatment with PI3K/AKT/mTOR inhibitors. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-61-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Current chemotherapy of breast cancer has a wide range of disadvantages, in particular, the development of therapy-related infections and hormonal imbalance. Combination of main cytostatic with glucocorticoids allows to broaden its therapeutic interval and to decrease the total toxicity of the treatment. However, long-term treatment with glucocorticoids leads to the development of severe side effects via activation of multiple molecular mechanisms. Thus, glucocorticoids activate prosurvival mTOR-dependent autophagy. Therefore, the evaluation of PI3K (phosphoinositide 3-kinases) / Akt (protein kinase B) / mTOR (mammalian target of rapamycin) inhibitors as adjuvants for breast cancer therapy is important for optimization of treatment protocol.Aim. Analysis of the effects of PI3K/Akt/mTOR inhibitors, rapamycin, wortmannin and LY-294002 in combination with glucocorticoids in breast cancer cell lines of different subtypes.Materials and methods. We demonstrated the inhibition of PI3K/Akt/mTOR signaling and the autophagy induction after the treatment of breast cancer cells with rapamycin, wortmannin and LY-294002 by Western blotting analysis of Beclin-1, phospho-Beclin-1 (Ser93 and Ser30).Conclusion. PI3K/Akt/mTOR inhibitors in combination with Dexamethasone cooperatively inhibited mTOR signaling and activated autophagy in breast cancer cells in vitro.
Collapse
Affiliation(s)
- D. D. Grigoreva
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. S. Lylova
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - A. D. Enikeev
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - G. A. Belitsky
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia
| |
Collapse
|
3
|
Sainero-Alcolado L, Mushtaq M, Liaño-Pons J, Rodriguez-Garcia A, Yuan Y, Liu T, Ruiz-Pérez MV, Schlisio S, Bedoya-Reina O, Arsenian-Henriksson M. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:226. [PMID: 35850708 PMCID: PMC9295514 DOI: 10.1186/s13046-022-02399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuroblastoma (NB), a childhood tumor derived from the sympathetic nervous system, presents with heterogeneous clinical behavior. While some tumors regress spontaneously without medical intervention, others are resistant to therapy, associated with an aggressive phenotype. MYCN-amplification, frequently occurring in high-risk NB, is correlated with an undifferentiated phenotype and poor prognosis. Differentiation induction has been proposed as a therapeutic approach for high-risk NB. We have previously shown that MYCN maintains an undifferentiated state via regulation of the miR-17 ~ 92 microRNA cluster, repressing the nuclear hormone receptors (NHRs) estrogen receptor alpha (ERα) and the glucocorticoid receptor (GR). METHODS Cell viability was determined by WST-1. Expression of differentiation markers was analyzed by Western blot, RT-qPCR, and immunofluorescence analysis. Metabolic phenotypes were studied using Agilent Extracellular Flux Analyzer, and accumulation of lipid droplets by Nile Red staining. Expression of angiogenesis, proliferation, and neuronal differentiation markers, and tumor sections were assessed by immunohistochemistry. Gene expression from NB patient as well as adrenal gland cohorts were analyzed using GraphPad Prism software (v.8) and GSEA (v4.0.3), while pseudo-time progression on post-natal adrenal gland cells from single-nuclei transcriptome data was computed using scVelo. RESULTS Here, we show that simultaneous activation of GR and ERα potentiated induction of neuronal differentiation, reduced NB cell viability in vitro, and decreased tumor burden in vivo. This was accompanied by a metabolic reprogramming manifested by changes in the glycolytic and mitochondrial functions and in lipid droplet accumulation. Activation of the retinoic acid receptor alpha (RARα) with all-trans retinoic acid (ATRA) further enhanced the differentiated phenotype as well as the metabolic switch. Single-cell nuclei transcriptome analysis of human adrenal glands indicated a sequential expression of ERα, GR, and RARα during development from progenitor to differentiated chromaffin cells. Further, in silico analysis revealed that patients with higher combined expression of GR, ERα, and RARα mRNA levels had elevated expression of neuronal differentiation markers and a favorable outcome. CONCLUSION Together, our findings suggest that combination therapy involving activation of several NHRs could be a promising pharmacological approach for differentiation treatment of NB patients.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Muhammad Mushtaq
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.440526.10000 0004 0609 3164Present address: Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300 Pakistan
| | - Judit Liaño-Pons
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Ye Yuan
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tong Liu
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Present address: Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, SE-171 64 Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Susanne Schlisio
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar Bedoya-Reina
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
4
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
5
|
Koch MS, Zdioruk M, Nowicki MO, Griffith AM, Aguilar E, Aguilar LK, Guzik BW, Barone F, Tak PP, Tabatabai G, Lederer JA, Chiocca EA, Lawler S. Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models. J Immunother Cancer 2022; 10:jitc-2021-003368. [PMID: 35017150 PMCID: PMC8753448 DOI: 10.1136/jitc-2021-003368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background Intratumoral viral oncolytic immunotherapy is a promising new approach for the treatment of a variety of solid cancers. CAN-2409 is a replication-deficient adenovirus that delivers herpes simplex virus thymidine kinase to cancer cells, resulting in local conversion of ganciclovir or valacyclovir into a toxic metabolite. This leads to highly immunogenic cell death, followed by a local immune response against a variety of cancer neoantigens and, next, a systemic immune response against the injected tumor and uninjected distant metastases. CAN-2409 treatment has shown promising results in clinical studies in glioblastoma (GBM). Patients with GBM are usually given the corticosteroid dexamethasone to manage edema. Previous work has suggested that concurrent dexamethasone therapy may have a negative effect in patients treated with immune checkpoint inhibitors in patients with GBM. However, the effects of dexamethasone on the efficacy of CAN-2409 treatment have not been explored. Methods In vitro experiments included cell viability and neurosphere T-cell killing assays. Effects of dexamethasone on CAN-2409 in vivo were examined using a syngeneic murine GBM model; survival was assessed according to Kaplan-Meier; analyses of tumor-infiltrating lymphocytes were performed with mass cytometry (CyTOF - cytometry by time-of-flight). Data were analyzed using a general linear model, with one-way analysis of variance followed by Dunnett’s multiple comparison test, Kruskal-Wallis test, Dunn’s multiple comparison test or statistical significance analysis of microarrays. Results In a mouse model of GBM, we found that high doses of dexamethasone combined with CAN-2409 led to significantly reduced median survival (29.0 days) compared with CAN-2409 treatment alone (39.5 days). CyTOF analyses of tumor-infiltrating immune cells demonstrated potent immune stimulation induced by CAN-2409 treatment. These effects were diminished when high-dose dexamethasone was used. Functional immune cell characterization suggested increased immune cell exhaustion and tumor promoting profiles after dexamethasone treatment. Conclusion Our data suggest that concurrent high-dose dexamethasone treatment may impair the efficacy of oncolytic viral immunotherapy of GBM, supporting the notion that dexamethasone use should be balanced between symptom control and impact on the therapeutic outcome.
Collapse
Affiliation(s)
- Marilin S Koch
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Michal O Nowicki
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alec M Griffith
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Paul P Tak
- Candel Therapeutics, Needham, Massachusetts, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - James A Lederer
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA .,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|