1
|
Schee JP, Tan JS, Tan CY, Shahrizaila N, Wong KT, Goh KJ. Multiple Acyl-CoA Dehydrogenase Deficiency: Phenotypic and Genetic Features of a Malaysian Cohort. J Clin Neurol 2024; 20:422-430. [PMID: 38951975 PMCID: PMC11220347 DOI: 10.3988/jcn.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited disorder of fatty acid oxidation that causes lipid storage myopathy (LSM). This is the first report on MADD that describes the phenotypic and genetic features of a Malaysian cohort. METHODS Among the >2,500 patients in a local muscle biopsy database, patients with LSM were identified and their genomic DNA were extracted from muscle samples and peripheral blood. All 13 exons of the electron-transfer flavoprotein dehydrogenase gene (ETFDH) were subsequently sequenced. Fifty controls were included to determine the prevalence of identified mutations in the normal population. RESULTS Fourteen (82%) of the 17 LSM patients had MADD with ETFDH mutations. Twelve (86%) were Chinese and two were Malay sisters. Other unrelated patients reported that they had no relevant family history. Nine (64%) were females. The median age at onset was 18.5 years (interquartile range=16-37 years). All 14 demonstrated proximal limb weakness, elevated serum creatine kinase levels, and myopathic changes in electromyography. Three patients experienced a metabolic crisis at their presentation. Sanger sequencing of ETFDH revealed nine different variants/mutations, one of which was novel: c.998A>G (p.Y333C) in exon 9. Notably, 12 (86%) patients, including the 2 Malay sisters, carried a common c.250G>A (p.A84T) variant, consistent with the hotspot mutation reported in southern China. All of the patients responded well to riboflavin therapy. CONCLUSIONS Most of our Malaysian cohort with LSM had late-onset, riboflavin-responsive MADD with ETFDH mutations, and they demonstrated phenotypic and genetic features similar to those of cases reported in southern China. Furthermore, we report a novel ETFDH mutation and possibly the first ever MADD patients of Malay descent.
Collapse
Affiliation(s)
- Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Joo San Tan
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Yin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Khean Jin Goh
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
3
|
Role of RNA in Molecular Diagnosis of MADD Patients. Biomedicines 2021; 9:biomedicines9050507. [PMID: 34064479 PMCID: PMC8147995 DOI: 10.3390/biomedicines9050507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) encodes the ETF-ubiquinone oxidoreductase (ETF-QO) and has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). In this study, we present the clinical and molecular diagnostic challenges, at the DNA and RNA levels, involved in establishing the genotype of four MADD patients with novel ETFDH variants: a missense variant, two deep intronic variants and a gross deletion. RNA sequencing allowed the identification of the second causative allele in all studied patients. Simultaneous DNA and RNA investigation can increase the number of MADD patients that can be confirmed following the suggestive data results of an expanded newborn screening program. In clinical practice, accurate identification of pathogenic mutations is fundamental, particularly with regard to diagnostic, prognostic, therapeutic and ethical issues. Our study highlights the importance of RNA studies for a definitive molecular diagnosis of MADD patients, expands the background of ETFDH mutations and will be important in providing an accurate genetic counseling and a prenatal diagnosis for the affected families.
Collapse
|
4
|
Missaglia S, Tavian D, Angelini C. ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 2021; 56:360-372. [PMID: 33823724 DOI: 10.1080/10409238.2021.1908952] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein dehydrogenase, also called ETF-ubiquinone oxidoreductase (ETF-QO), is a protein localized in the inner membrane of mitochondria, playing a central role in the electron-transfer system. Indeed, ETF-QO mediates electron transport from flavoprotein dehydrogenases to the ubiquinone pool. ETF-QO mutations are often associated with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD, OMIM#231680), a multisystem genetic disease characterized by various clinical manifestations with different degrees of severity. In this review, we outline the clinical features correlated with ETF-QO deficiency and the benefits obtained from different treatments, such as riboflavin, L-carnitine and/or coenzyme Q10 supplementation, and a diet poor in fat and protein. Moreover, we provide a detailed summary of molecular and bioinformatic investigations, describing the mutations identified in ETFDH gene and highlighting their predicted impact on enzymatic structure and activity. In addition, we report biochemical and functional analysis, performed in HEK293 cells and patient fibroblasts and muscle cells, to show the relationship between the nature of ETFDH mutations, the variable impairment of enzyme function, and the different degrees of RR-MADD severity. Finally, we describe in detail 5 RR-MADD patients carrying different ETFDH mutations and presenting variable degrees of clinical symptom severity.
Collapse
Affiliation(s)
- Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy.,Psychology Department, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy.,Psychology Department, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Corrado Angelini
- Neuromuscular Laboratory, Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Manta A, Spendiff S, Lochmüller H, Thompson R. Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:401-417. [PMID: 33720849 PMCID: PMC8203237 DOI: 10.3233/jnd-200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Metabolic myopathies are a heterogenous group of muscle diseases typically characterized by exercise intolerance, myalgia and progressive muscle weakness. Effective treatments for some of these diseases are available, but while our understanding of the pathogenesis of metabolic myopathies related to glycogen storage, lipid metabolism and β-oxidation is well established, evidence linking treatments with the precise causative genetic defect is lacking. OBJECTIVE The objective of this study was to collate all published evidence on pharmacological therapies for the aforementioned metabolic myopathies and link this to the genetic mutation in a format amenable to databasing for further computational use in line with the principles of the "treatabolome" project. METHODS A systematic literature review was conducted to retrieve all levels of evidence examining the therapeutic efficacy of pharmacological treatments on metabolic myopathies related to glycogen storage and lipid metabolism. A key inclusion criterion was the availability of the genetic variant of the treated patients in order to link treatment outcome with the genetic defect. RESULTS Of the 1,085 articles initially identified, 268 full-text articles were assessed for eligibility, of which 87 were carried over into the final data extraction. The most studied metabolic myopathies were Pompe disease (45 articles), multiple acyl-CoA dehydrogenase deficiency related to mutations in the ETFDH gene (15 articles) and systemic primary carnitine deficiency (8 articles). The most studied therapeutic management strategies for these diseases were enzyme replacement therapy, riboflavin, and carnitine supplementation, respectively. CONCLUSIONS This systematic review provides evidence for treatments of metabolic myopathies linked with the genetic defect in a computationally accessible format suitable for databasing in the treatabolome system, which will enable clinicians to acquire evidence on appropriate therapeutic options for their patient at the time of diagnosis.
Collapse
Affiliation(s)
- A. Manta
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - S. Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - H. Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center –University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R. Thompson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Chen W, Zhang Y, Ni Y, Cai S, Zheng X, Mastaglia FL, Wu J. Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD): case reports and epidemiology of ETFDH gene mutations. BMC Neurol 2019; 19:330. [PMID: 31852447 PMCID: PMC6921586 DOI: 10.1186/s12883-019-1562-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is a riboflavin-responsive lipid-storage myopathy caused by mutations in the EFTA, EFTB or ETFDH genes. We report a Chinese family of Southern Min origin with two affected siblings with late-onset riboflavin-responsive MADD due to a homozygous c.250G > A EFTDH mutation and review the genetic epidemiology of the c.250G > A mutation. CASE PRESENTATION Both siblings presented with exercise-induced myalgia, progressive proximal muscle weakness and high levels of serum muscle enzymes and were initially diagnosed as polymyositis after a muscle biopsy. A repeat biopsy in one sibling subsequently showed features of lipid storage myopathy and genetic analysis identified a homozygous mutation (c.250G > A) in the ETFDH gene in both siblings and carriage of the same mutation by both parents. Glucocorticoid therapy led to improvement in muscle enzyme levels, but little change in muscle symptoms, and only after treatment with riboflavin was there marked improvement in exercise tolerance and muscle strength. The frequency and geographic distribution of the c.250G > A mutation were determined from a literature search for all previously reported cases of MADD with documented mutations. Our study found the c.250G > A mutation is the most common EFTDH mutation in riboflavin-responsive MADD (RR-MADD) and is most prevalent in China and South-East Asia where its epidemiology correlates with the distribution and migration patterns of the southern Min population in Southern China and neighbouring countries. CONCLUSIONS Mutations in ETFDH should be screened for in individuals with lipid-storage myopathy to identify patients who are responsive to riboflavin. The c.250G > A mutation should be suspected particularly in individuals of southern Min Chinese background.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Youqiao Zhang
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yifeng Ni
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaoyu Cai
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zheng
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, QE II Medical Centre, 8 Verdun Street, Nedlands, Western Australia, Australia
| | - Jingshan Wu
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Faculty of Health and Medical Sciences, The University of Western Australia, (M503), 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|