1
|
Novazzi F, Arcari G, Drago Ferrante F, Boutahar S, Genoni AP, Carcione D, Cassani G, Gigante P, Carbotti M, Capuano R, Pasciuta R, Mancini N. Combined Use of Phenotypic Screening and of a Novel Commercial Assay (REALQUALITY Carba-Screen) for the Rapid Molecular Detection of Carbapenemases: A Single-Center Experience. Diagnostics (Basel) 2024; 14:1599. [PMID: 39125475 PMCID: PMC11311838 DOI: 10.3390/diagnostics14151599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carbapenem resistance is a serious public health threat, causing numerous deaths annually primarily due to healthcare-associated infections. To face this menace, surveillance programs in high-risk patients are becoming a widespread practice. Here we report the performance of the combined use of a recently approved commercial multiplex real-time PCR assay (REALQUALITY Carba-Screen kit) with conventional phenotypic screening. In this three-month study, 479 rectal swabs from 309 patients across high-risk units were evaluated by combining the two approaches. Although the molecular assay showed a higher positivity rate than phenotypic screening (7.1% vs. 5%), it should be noted that the molecular method alone would have missed eight carbapenem-resistant isolates, while using only phenotypic screening would not have detected sixteen isolates. This demonstrates the complementary strengths of each method. Our study confirms the need for a combined approach to maximize the possible clinical impact of this kind of screening, ensuring a more comprehensive detection of resistant strains.
Collapse
Affiliation(s)
- Federica Novazzi
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Gabriele Arcari
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Francesca Drago Ferrante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Sara Boutahar
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Angelo Paolo Genoni
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Davide Carcione
- Laboratory of Clinical Microbiology and Virology, ASST Valle Olona, 21013 Gallarate, Italy
| | - Gianluca Cassani
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Paolo Gigante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Mattia Carbotti
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Riccardo Capuano
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Renée Pasciuta
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
2
|
Aktas O, Akbaba O, Uyanik MH, Uslu H. Evaluation of Blood Culture Results in Patients with Malignancy in Erzurum Province, Turkey. Acta Med Litu 2024; 31:128-139. [PMID: 38978849 PMCID: PMC11227679 DOI: 10.15388/amed.2024.31.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/10/2024] Open
Abstract
Background Bloodstream infections are a serious public health problem that requires follow-up with blood culture; this negatively affects the course of the disease and patient healthcare costs in patients with malignancy. This study aimed to determine the growth frequency of pathogens and their antibiotic resistance profiles in the blood cultures of patients with hematological and oncogenic malignancies. Materials and methods The results of 7451 blood cultures, obtained from 2926 patients between January 2017 and January 2022, were evaluated retrospectively. Of these cultures, 3969 were obtained from patients with malignancy (diagnostic codes C00-D48 in ICD-10) and 3482 from patients without malignancy. The hospital information management system modules were used to acquire patient data and blood culture results. Results Various microorganisms grew in 10.1% of blood cultures. Of these organisms, 64.1% were isolated from cases of malignancy. Of the pathogens, 49.2% were gram-negative bacteria, 47.7% were gram-positive bacteria, and 3.1% were fungi. The most frequently isolated bacteria were methicillin-resistant coagulase-negative staphylococci (3.2%), Escherichia coli (2.3%), Klebsiella pneumoniae (1.0%), methicillin-sensitive coagulase-negative staphylococci (0.7%), and Staphylococcus aureus (0.6%). Pathogen positivity was highest in the patient cultures with urinary system cancer (23.9%), thyroid and other endocrine gland cancers (20.6%), female and male genital organ cancers (18.2%/16.9%), and digestive organ cancer (14.2%). Gram-negative bacteria to ampicillin, piperacillin, and sulfamethoxazole-trimethoprim and Gram-positive bacteria to penicillin, erythromycin, and sulfamethoxazole-trimethoprim were highly resistant. Combined resistance to imipenem and meropenem was observed in 25 Gram-negative bacteria. Twelve (48%) of the carbapenem-resistant bacteria were isolated from patients with lymphoid, hematopoietic, and related tissue malignant neoplasia. Conclusion This study reported microorganisms and their antimicrobial resistance in the blood cultures of malignant patients, a special patient group. It pointed out that the antibiotic resistance of Staphylococcus, Klebsiella pneumoniae, and E. coli is high enough to cause problems in the treatment of patients with malignancy.
Collapse
Affiliation(s)
- Osman Aktas
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozgür Akbaba
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | | | - Hakan Uslu
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Chen Y, Sha L, Li W, Zhou L, Pei B, Bian X, Ji Y, Liu Y, Wang L, Yang H. Rapid quantitative detection of Klebsiella pneumoniae in infants with severe infection disease by point-of-care immunochromatographic technique based on nanofluorescent microspheres. Front Bioeng Biotechnol 2023; 11:1144463. [PMID: 36845192 PMCID: PMC9945336 DOI: 10.3389/fbioe.2023.1144463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Klebsiella pneumoniae (KP, K. pneumoniae) is one of the most important nosocomial pathogens that cause severe respiratory infections. As evolutionary high-toxic strains with drug resistance genes increase year by year, the infections caused by it are often accompanied by high mortality, which may be fatal to infants and can cause invasive infections in healthy adults. At present, the traditional clinical methods for detecting K. pneumoniae are cumbersome and time-consuming, and the accuracy and sensitivity are not high. In this study, nanofluorescent microsphere (nFM)-based immunochromatographic test strip (ICTS) quantitative testing platform were developed for point-of-care testing (POCT) method of K. pneumoniae. Methods: 19 clinical samples of infants were collected, the genus-specific gene of mdh was screened from K. pneumoniae. Polymerase chain reaction (PCR) combined with nFM-ICTS based on magnetic purification assay (PCR-ICTS) and strand exchange amplification (SEA) combined with nFM-ICTS based on magnetic purification assay (SEA-ICTS) were developed for the quantitative detection of K. pneumoniae. The sensitivity and specificity of SEA-ICTS and PCR-ICTS were demonstrated by the existing used classical microbiological methods, the real-time fluorescent quantitative PCR (RTFQ-PCR) and PCR assay based on agarose gel electrophoresis (PCR-GE). Results: Under optimum working conditions, the detection limits of PCR-GE, RTFQ-PCR, PCR-ICTS and SEA-ICTS are 7.7 × 10-3, 2.5 × 10-6, 7.7 × 10-6, 2.82 × 10-7 ng/μL, respectively. The SEA-ICTS and PCR-ICTS assays can quickly identify K. pneumoniae, and could specifically distinguish K. pneumoniae samples from non-K. pneumoniae samples. Experiments have shown a diagnostic agreement of 100% between immunochromatographic test strip methods and the traditional clinical methods on the detection of clinical samples. During the purification process, the Silicon coated magnetic nanoparticles (Si-MNPs) were used to removed false positive results effectively from the products, which showed of great screening ability. The SEA-ICTS method was developed based on PCR-ICTS, which is a more rapid (20 min), low-costed method compared with PCR-ICTS assay for the detection of K. pneumoniae in infants. Only need a cheap thermostatic water bath and takes a short detection time, this new method can potentially serve as an efficient point-of-care testing method for on-site detection of pathogens and disease outbreaks without fluorescent polymerase chain reaction instruments and professional technicians operation.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lulu Sha
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenqing Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liuyan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, Suqian First People’s Hospital, Suqian, China
| | - Xinyu Bian
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yongxin Ji
- Nanjing Nanoeast Biotech Co., Ltd., Nanjing, China
| | - Yiping Liu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Xuzhou First People’s Hospital, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| |
Collapse
|
4
|
Nishida S, Ihashi Y, Yoshino Y, Ono Y. Evaluation of an immunological assay for the identification of multiple carbapenemase-producing Gram-negative bacteria. Pathology 2022; 54:917-921. [PMID: 35934532 DOI: 10.1016/j.pathol.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 12/31/2022]
Abstract
Carbapenemase-producing Gram-negative organisms (CPOs) frequently gain multidrug-resistant phenotypes and thereby limit the therapeutic options available. Colonisation and infection with CPOs are critical risks for mortality in clinical settings, especially in critical care medicine. Carbapenemase genes on plasmids have transferred to many Gram-negative species, and these species have spread, leading to global concern regarding antimicrobial resistance. A molecular rapid diagnostic test (mRDT) for CPOs is urgently required in critical care medicine. Here, we evaluated a rapid lateral flow immunoassay (LFIA) for CPOs isolated from patients at university hospitals, including intensive care units, and compared the results with those obtained using the multiplex polymerase chain reaction (PCR) method. NG-test CARBA 5 detected multiple carbapenemases, KPC, OXA-48, NDM, VIM, and IMP variants expressed in clinical isolates. Quick Chaser IMP detected IMP variants. The LFIAs exhibited 100% sensitivity and specificity relative to clinical isolates on agar plates. By contrast, the multiplex PCR method exhibited a limited ability to detect IMP-7-producing isolates not belonging to the IMP1 group, which resulted in 97% sensitivity and 100% specificity for IMP-producing isolates. Our results demonstrate that the LFIA is a useful mRDT to identify CPOs and has an advantage over the PCR method for both detection time and sensitivity to the IMP groups. LFIA could complement the nucleic acid amplification test used to identify CPOs. In conclusion, we evaluated sensitive and specific LFIAs capable of detecting carbapenemase production in Gram-negative bacteria. We anticipate that LFIAs will become a point-of-care test enabling rapid detection of carbapenemases in hospital settings, particularly in intensive care units.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan.
| | - Yusuke Ihashi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan; Faculty of Health and Medical Science, Teikyo Heisei University, Toshima, Tokyo, Japan
| |
Collapse
|
5
|
Jeong S, Lee N, Park MJ, Jeon K, Kim HS, Kim HS, Kim JS, Song W. Genotypic Distribution and Antimicrobial Susceptibilities of Carbapenemase-Producing Enterobacteriaceae Isolated From Rectal and Clinical Samples in Korean University Hospitals Between 2016 and 2019. Ann Lab Med 2022; 42:36-46. [PMID: 34374347 PMCID: PMC8368229 DOI: 10.3343/alm.2022.42.1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background The emergence of carbapenemase-producing Enterobacteriaceae (CPE) represents a major clinical problem. Recently, the occurrence of CPE has increased globally, but epidemiological patterns vary across region. We report the trends in the genotypic distribution and antimicrobial susceptibility of CPE isolated from rectal and clinical samples during a four-year period. Methods Between January 2016 and December 2019, 1,254 nonduplicated CPE isolates were obtained from four university hospitals in Korea. Carbapenemase genotypes were determined by multiplex real-time PCR. Antimicrobial susceptibility was profiled using the Vitek 2 system (bioMérieux, Hazelwood, MO, USA) or MicroScan Walkaway-96 system (Siemens West Sacramento, CA, USA). The proportions of carbapenemase genotypes and nonsusceptibility were analyzed using Pearson’s chi-square test. Results Among the 1,254 CPE isolates, 486 (38.8%), 371 (29.6%), 357 (28.5%), 8 (0.6%), 8 (0.6%), and 24 (1.9%) were Klebsiella pneumoniae carbapenemase (KPC), oxacillinase (OXA)-48-like, New Delhi metallo-β-lactamase (NDM), imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), and multiple producers, respectively. The predominant species was K. pneumoniae (72.6%), followed by Escherichia coli (6.5%). More than 90% of the isolates harboring KPC, NDM, and OXA-48-like were nonsusceptible to cephalosporins, aztreonam, and carbapenems. Conclusions The impact of CPE is primarily due to KPC-, NDM-, and OXA-48-like-producing K. pneumoniae isolates. Isolates carrying these carbapenemase are mostly multidrug-resistant. Control strategies based on these genotypic distributions and antimicrobial susceptibilities of CPE isolates are required.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
El Kettani A, Maaloum F, Nzoyikorera N, Khalis M, Katfy K, Belabbes H, Zerouali K. Evaluation of the Performances of the Rapid Test RESIST-5 O.O.K.N.V Used for the Detection of Carbapenemases-Producing Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10080953. [PMID: 34439003 PMCID: PMC8388884 DOI: 10.3390/antibiotics10080953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The emergence of carbapenemase-producing Enterobacterales (CPE) is a public health problem, requiring rapid and reliable diagnostic methods. The aim is to compare the new rapid immunochromatographic (IC) test: RESIST-5 O.O.K.N.V with PCR and the predictive model of EUCAST algorithm for the detection of CPE. Methods: A longitudinal cross-sectional study was carried out in the bacteriology-virology laboratory of the Ibn Rochd-Casablanca University Hospital, from 1 February 2019 to 28 February 2020, concerning strains with reduced sensitivity to Ertapenem. The identification of bacterial species was carried out according to the standard criteria of microbiology and antibiogram according to CASFM-EUCAST 2019 recommendations. The sensitivity and specificity of the rapid IC test were calculated. Results: The results of the new IC test showed a sensitivity and specificity of 100% for the detection of OXA-48 and NDM. These carbapenemases were detected simultaneously with a sensitivity and specificity of 100%. OXA-48 was the most common carbapenemas found (36%), followed by NDM (24%) and (13.4%) cases of OXA-48 and NDM coexistence. Conclusion: The rapid IC test could be a rapid and effective diagnostic tool for detecting the most common carbapenemases in our context, and to accelerate the implementation of adequate antibiotic therapy and infection control measures in patients with CPE infections
Collapse
Affiliation(s)
- Assiya El Kettani
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
- Correspondence: ; Tel.: +212-0619094322
| | - Fakhreddine Maaloum
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Nehemie Nzoyikorera
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Mohamed Khalis
- International School of Public Health, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco;
| | - Khalid Katfy
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
| | - Houria Belabbes
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Khalid Zerouali
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| |
Collapse
|
7
|
Nishida S, Nakagawa M, Ouchi Y, Sakuma C, Nakajima Y, Shimizu H, Shibata T, Kurosawa Y, Maruyama T, Okumura CJ, Hatayama N, Sato Y, Asahara M, Ishigaki S, Furukawa T, Akuta T, Ono Y. A rabbit monoclonal antibody-mediated lateral flow immunoassay for rapid detection of CTX-M extended-spectrum β-lactamase-producing Enterobacterales. Int J Biol Macromol 2021; 185:317-323. [PMID: 34129888 DOI: 10.1016/j.ijbiomac.2021.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Infections of CTX-M extended-spectrum β-lactamase-producing Enterobacterales are a severe threat in clinical settings. CTX-M genes on plasmids have been transferred to many Enterobacterales species, and these species have spread, leading to the global problem of antimicrobial resistance. Here, we developed a lateral flow immunoassay (LFIA) based on an anti-CTX-M rabbit monoclonal antibody. This antibody detected CTX-M variants from the CTX-M-9, CTX-M-2, and CTX-M-1 groups expressed in clinical isolates. The LFIA showed 100% sensitivity and specificity with clinical isolates on agar plates, and its limit of detection was 0.8 ng/mL recombinant CTX-M-14. The rabbit monoclonal antibody did not cross-react with bacteria producing other class A β-lactamases, including SHV. In conclusion, we developed a highly sensitive and specific LFIA capable of detecting CTX-M enzyme production in Enterobacterales. We anticipate that our LFIA will become a point-of-care test enabling rapid detection of CTX-M in hospital and community settings as well as a rapid environmental test.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Masataka Nakagawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yuki Ouchi
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Chiaki Sakuma
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yu Nakajima
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Hisayo Shimizu
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Takashi Shibata
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasunori Kurosawa
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Toshiaki Maruyama
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - C J Okumura
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Miwa Asahara
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Four-Hour Immunochromatographic Detection of Intestinal Carriage of Carbapenemase-Producing Enterobacteriaceae: a Validation Study. J Clin Microbiol 2021; 59:JCM.02973-20. [PMID: 33789958 DOI: 10.1128/jcm.02973-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
The increasing incidence of carbapenemase-producing Gram-negative bacilli (C-PGNB) represents a major public health challenge. Rapid detection of digestive colonization with C-PGNB is fundamental to control their spread. We performed the validation of a rapid protocol for C-PGNB detection directly on rectal swabs. We developed a protocol combining enrichment by a rapid selective subculture of the rectal swab medium and realization of a Resist-4 O.K.N.V. K-SeT test on the bacterial pellet obtained. The limit of detection and performances of this protocol were validated in vitro on 52 C-PGNB strains spiked on a calibrated sample suspension and confirmed in clinical settings on 144 rectal swabs sampled from patients with C-PGNB digestive colonization (n = 48) and controls (patients with extended-spectrum beta-lactamase [ESBL] colonization [n = 48] and without carbapenemase/ESBL [n = 48]). The protocol detected, with 100% sensitivity, the presence of the 15 OXA-48-, 14 KPC-, 13 NDM-, and 10 VIM-producing GNB from 103 CFU/ml. The limit of detection was 2 × 102 CFU/ml. Among the 48 C-PGNB-containing rectal swabs of the validation cohort, 46 were accurately detected. False negative were observed for 1 NDM-producing Acinetobacter baumannii strain and 1 OXA-48-producing Escherichia coli strain. The 96 control swabs were negative. Sensitivity and specificity for C-PGNB detection were 97.7% (95% confidence interval [CI], 87.7 to 100) and 100% (95% CI, 96.2 to 100). The negative likelihood ratio was 0.04 (95% CI, 0.01 to 0.16). Considering a C-PGNB digestive colonization prevalence between 0.01% and 0.1%, positive and negative predictive values were 100%. Our protocol is a rapid and low-cost method detecting accurately the digestive colonization with carbapenemase-producing Enterobacteriaceae in 4 h without any requirement for specific equipment.
Collapse
|
9
|
Roth S, Berger FK, Link A, Nimmesgern A, Lepper PM, Murawski N, Bittenbring JT, Becker SL. Application and clinical impact of the RESIST-4 O.K.N.V. rapid diagnostic test for carbapenemase detection in blood cultures and clinical samples. Eur J Clin Microbiol Infect Dis 2021; 40:423-428. [PMID: 32895756 PMCID: PMC7817559 DOI: 10.1007/s10096-020-04021-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
Invasive infections caused by carbapenemase-producing bacteria are associated with excess mortality. We applied a rapid diagnostic test (RDT) on clinical samples with an elevated likelihood of carbapenemase-producing bacteria and documented its impact on antibiotic treatment decisions. Among 38 patients, twelve tested positive for infections caused by carbapenemase-producing bacteria (31.6%), mainly in blood cultures. KPC (n = 10) was more frequent than OXA-48 (n = 2). RDT-based carbapenemase detection led to a treatment modification to ceftazidime/avibactam-containing regimens in all patients before detailed antibiotic testing results became available. Eleven patients (92%) survived the acute infection, whereas one patient with a ceftazidime/avibactam- and colistin-resistant OXA-48-positive isolate died.
Collapse
Affiliation(s)
- Sophie Roth
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Fabian K Berger
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Andreas Link
- Department of Internal Medicine III, Saarland University, Homburg, Germany
| | - Anna Nimmesgern
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V, Saarland University, Homburg, Germany
| | - Niels Murawski
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Jörg T Bittenbring
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| |
Collapse
|
10
|
Wei Q, Sun J, Wang Z, Yan L, Zhang C, Xu X. Evaluation of Modified Rapid Carbapenem Inactivation Method (mrCIM) Combined with Rapid EDTA-Modified Carbapenem Inactivation Method (reCIM) to Detect Carbapenemase and Distinguish Metallo-Carbapenemase in Enterobacteriaceae Within Four Hours. Infect Drug Resist 2020; 13:1919-1927. [PMID: 32606840 PMCID: PMC7320892 DOI: 10.2147/idr.s249570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To develop a rapid EDTA-modified carbapenem inactivation method (reCIM) combined with modified rapid carbapenem inactivation method (mrCIM) to detect carbapenemase and distinguish metallo-β-lactamases from carbapenemases in Enterobacteriaceae in 4 hrs. Materials and Methods The sensitivities and specificities of mrCIM and reCIM were retrospectively evaluated in 247 carbapenem-resistant Enterobacteriaceae of which 107 were carbapenemase producers confirmed by PCR and sequencing. In addition, mrCIM and reCIM were prospectively evaluated with 47 carbapenem-resistant enterobacterial isolates. Results The sensitivity and specificity of mrCIM were 96.3% and 97.1% at 2.5 hrs post incubation, and the specificity increased to 98.6% at 3 hrs. The combined mrCIM and reCIM showed a sensitivity of 95.4% and a specificity of 100% at 2.5 hrs post incubation in identifying metallo-β-lactamases, and the sensitivity increased to 97.0% at 3 hrs. These performance characteristics are comparable to mCIM and eCIM; however, compared with mCIM and reCIM tests which need at least 24 hrs to detect results, the mrCIM and reCIM required less than 4 hrs of total work time. Conclusion The combined mrCIM and reCIM can be used to accurately and quickly detect carbapenemase and metallo-β-lactamases in Enterobacteriaceae in 4 hrs and are suitable for routine use in most clinical microbiology laboratories.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jide Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhu Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chuanming Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|