1
|
Avonts BL, Shen Q, Wrobel NJ, Fessler RG, David BT. The relationship between changes in inflammation and locomotor function in sensory phenotypes of central neuropathic pain after spinal cord injury. Pain Rep 2024; 9:e1184. [PMID: 39399305 PMCID: PMC11469887 DOI: 10.1097/pr9.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Central neuropathic pain (CNP) commonly develops in patients after spinal cord injury (SCI), causing debilitating symptoms and sensory abnormalities to mechanical and thermal stimuli. The biological variability of pain phenotypes in individuals has limited the number of positive outcomes. Thus, it is necessary to investigate the physiological processes contributing to sensory changes that develop over time. Objective To investigate the physiological processes contributing to neuropathic pain sensory changes and locomotor impairments with sensory phenotypes that develop over time. Methods Using the tail flick and von Frey tests, we performed hierarchical clustering to determine the subpopulation of rats that developed thermal and mechanical sensory abnormalities. To measure inflammation as a potential mediator of CNP phenotypes, we used flow cytometry and immunohistochemistry. Finally, to assess the secondary effects on locomotor recovery, up to 8 weeks after injury, we used the CatWalk test to assess multiple parameters of gait. Results The von Frey test showed a subpopulation of SCI rats that were hyposensitive to mechanical stimuli from 6 to 8 weeks after injury. The tail flick test showed a subpopulation of SCI rats that were hypersensitive to thermal stimuli at 1 week and 3 to 8 weeks after injury. Although there were no differences in inflammatory cells between subpopulations, we did see significant changes in locomotor recovery between rats with and without sensory abnormalities. Conclusion The myeloid cell population at large is not affected by mechanical or thermal phenotypes of pain in this model; however, locomotor recovery is impaired depending on the pain phenotype present. Further investigation into acute inflammatory cells may be insightful for predicting the development of pain phenotypes.
Collapse
Affiliation(s)
- Brittany L. Avonts
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Quan Shen
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Neal J. Wrobel
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Richard G. Fessler
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| | - Brian T. David
- Rush University Medical Center, Department of Neurosurgery, Chicago, IL, USA
| |
Collapse
|
2
|
Kang W, Lee J, Choi W, Kim J, Kim J, Park SM. Fully Implantable Neurostimulation System for Long-Term Behavioral Animal Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3711-3721. [PMID: 37708012 DOI: 10.1109/tnsre.2023.3315371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Spinal cord stimulation (SCS) is an emerging therapeutic option for patients with neuropathic pain due to spinal cord injury (SCI). Numerous studies on pain relief effects with SCS have been conducted and demonstrated promising results while the mechanisms of analgesic effect during SCS remain unclear. However, an experimental system that enables large-scale long-term animal studies is still an unmet need for those mechanistic studies. This study proposed a fully wireless neurostimulation system that can efficiently support a long-term animal study for neuropathic pain relief. The developed system consists of an implantable stimulator, an animal cage with an external charging coil, and a wireless communication interface. The proposed device has the feature of remotely controlling stimulation parameters via radio-frequency (RF) communication and wirelessly charging via magnetic induction in freely moving rats. Users can program stimulation parameters such as pulse width, intensity, and duration through an interface on a computer. The stimulator was packaged with biocompatible epoxy to ensure long-term durability under in vivo conditions. Animal experiments using SCI rats were conducted to demonstrate the functionality of the device, including long-term usability and therapeutic effects. The developed system can be tailored to individual user needs with commercially available components, thus providing a cost-effective solution for large-scale long-term animal studies on neuropathic pain relief.
Collapse
|
3
|
Semita IN, Utomo DN, Suroto H, Sudiana IK, Gandi P. The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Korean J Pain 2023; 36:72-83. [PMID: 36549874 PMCID: PMC9812698 DOI: 10.3344/kjp.22279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 μL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.
Collapse
Affiliation(s)
- I Nyoman Semita
- Doctoral Program of Medical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,Department of Orthopaedic, Faculty of Medicine, University of Jember, Jember, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,Correspondence: Dwikora Novembri Utomo Department of Orthopaedic, Faculty of Medicine, Airlangga University, Jl. Manyar Tirtosari IV/7, Surabaya, East Java, Indonesia, Tel: +628123036236, Fax: +62315020406, E-mail:
| | - Heri Suroto
- Department of Orthopaedic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - I Ketut Sudiana
- Department of Anatomic Pathology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Parama Gandi
- Departement of Cardiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
4
|
Hasriadi, Wasana PWD, Vajragupta O, Rojsitthisak P, Towiwat P. Automated home-cage for the evaluation of innate non-reflexive pain behaviors in a mouse model of inflammatory pain. Sci Rep 2021; 11:12240. [PMID: 34112846 PMCID: PMC8192791 DOI: 10.1038/s41598-021-91444-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
The failure to develop analgesic drugs is attributed not only to the complex and diverse pathophysiology of pain in humans but also to the poor experimental design and poor preclinical assessment of pain. Although considerable efforts have been devoted to overcoming the relevant problems, many features of the behavioral pain assessment remain to be characterized. For example, a decreased locomotor activity as a common presentation of pain-like behavior has yet to be described. Studies on mice experimentally induced with carrageenan have provided opportunities to explore pain-related behaviors in automated home-cage monitoring. Through this approach, the locomotor activities of mice with carrageenan-induced inflammatory pain can be precisely and objectively captured. Here, we found that the mobile behaviors of mice reduced, and their immobility increased, indicating that carrageenan induction in mice caused a significant decrease in locomotor activity. These non-reflexive pain behaviors were strongly correlated with the reflexive pain behaviors measured via von Frey and plantar tests. Furthermore, the pharmacological intervention using indomethacin improved the locomotor activity of mice with carrageenan-induced pain. Thus, the analysis of the locomotor activity in automated home-cage monitoring is useful for studying the behavioral analgesia and the pharmacological screening of analgesic drugs. The combined evaluation of reflexive and non-reflexive pain behaviors enhances the translational utility of preclinical pain research in rodents.
Collapse
Affiliation(s)
- Hasriadi
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Opa Vajragupta
- Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasarapa Towiwat
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Lee BH, Kang J, Kim HY, Gwak YS. The Roles of Superoxide on At-Level Spinal Cord Injury Pain in Rats. Int J Mol Sci 2021; 22:ijms22052672. [PMID: 33800907 PMCID: PMC7961837 DOI: 10.3390/ijms22052672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: In the present study, we examined superoxide-mediated excitatory nociceptive transmission on at-level neuropathic pain following spinal thoracic 10 contusion injury (SCI) in male Sprague Dawley rats. Methods: Mechanical sensitivity at body trunk, neuronal firing activity, and expression of superoxide marker/ionotropic glutamate receptors (iGluRs)/CamKII were measured in the T7/8 dorsal horn, respectively. Results: Topical treatment of superoxide donor t-BOOH (0.4 mg/kg) increased neuronal firing rates and pCamKII expression in the naïve group, whereas superoxide scavenger Tempol (1 mg/kg) and non-specific ROS scavenger PBN (3 mg/kg) decreased firing rates in the SCI group (* p < 0.05). SCI showed increases of iGluRs-mediated neuronal firing rates and pCamKII expression (* p < 0.05); however, t-BOOH treatment did not show significant changes in the naïve group. The mechanical sensitivity at the body trunk in the SCI group (6.2 ± 0.5) was attenuated by CamKII inhibitor KN-93 (50 μg, 3.9 ± 0.4) or Tempol (1 mg, 4 ± 0.4) treatment (* p < 0.05). In addition, the level of superoxide marker Dhet showed significant increase in SCI rats compared to the sham group (11.7 ± 1.7 vs. 6.6 ± 1.5, * p < 0.05). Conclusions: Superoxide and the pCamKII pathway contribute to chronic at-level neuropathic pain without involvement of iGluRs following SCI.
Collapse
Affiliation(s)
- Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
| | - Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA;
| | - Hee Young Kim
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Young S. Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
- Correspondence: ; Tel.: +82-949-824-7222
| |
Collapse
|
6
|
Blumenthal GH, Nandakumar B, Schnider AK, Detloff MR, Ricard J, Bethea JR, Moxon KA. Modelling at-level allodynia after mid-thoracic contusion in the rat. Eur J Pain 2021; 25:801-816. [PMID: 33296535 DOI: 10.1002/ejp.1711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The rat mid-thoracic contusion model has been used to study at-level tactile allodynia, a common type of pain that develops after spinal cord injury (SCI). An important advantage of this model is that not all animals develop hypersensitivity. Therefore, it can be used to examine mechanisms that are strictly related to the development of pain-like behaviour separately from mechanisms related to the injury itself. However, how to separate animals that develop hypersensitivity from those that do not is unclear. METHODS The aims of the current study were to identify where hypersensitivity and spasticity develop and use this information to identify metrics to separate animals that develop hypersensitivity from those that do not to study differences in their behaviour. To accomplish these aims, a grid was used to localize hypersensitivity on the dorsal trunk relative to thoracic dermatomes and supraspinal responses to tactile stimulation were tallied. These supraspinal responses were used to develop a hypersensitivity score to separate animals that develop hypersensitivity, or pain-like response to nonpainful stimuli. RESULTS Similar to humans, the development of hypersensitivity could occur with the development of spasticity or hyperreflexia. Moreover, the time course and prevalence of hypersensitivity phenotypes (at-, above-, or below level) produced by this model were similar to that observed in humans with SCI. CONCLUSION However, the amount of spared spinal matter in the cord did not explain the development of hypersensitivity, as previously reported. This approach can be used to study the mechanisms underlying the development of hypersensitivity separately from mechanisms related to injury alone.
Collapse
Affiliation(s)
- Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Ashley K Schnider
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Megan R Detloff
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jerome Ricard
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA.,Center for Neuroscience, Davis, CA, USA
| |
Collapse
|
7
|
Sham surgeries for central and peripheral neural injuries persistently enhance pain-avoidance behavior as revealed by an operant conflict test. Pain 2020; 160:2440-2455. [PMID: 31323014 DOI: 10.1097/j.pain.0000000000001642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies using rodent models of neuropathic pain use sham surgery control procedures that cause deep tissue damage. Sham surgeries would thus be expected to induce potentially long-lasting postsurgical pain, but little evidence for such pain has been reported. Operant tests of voluntary behavior can reveal negative motivational and cognitive aspects of pain that may provide sensitive tools for detecting pain-related alterations. In a previously described operant mechanical conflict test involving lengthy familiarization and training, rodents freely choose to either escape from a brightly lit chamber by crossing sharp probes or refuse to cross. Here, we describe a brief (2-day) mechanical conflict protocol that exploits rats' innate exploratory response to a novel environment to detect persistently enhanced pain-avoidance behavior after sham surgeries for 2 neural injury models: thoracic spinal cord injury and chronic constriction injury of the sciatic nerve. Pitting the combined motivations to avoid the bright light and to explore the novel device against pain from crossing noxious probes disclosed a conflicting, hyperalgesia-related reluctance to repeatedly cross the probes after injury. Rats receiving standard sham surgeries demonstrated enhanced pain-like avoidance behavior compared with naive controls, and this behavior was similar to that of corresponding chronic constriction injury or spinal cord injury rats weeks or months after injury. In the case of sham surgery for spinal cord injury, video analysis of voluntary exploratory behavior directed at the probes revealed enhanced forepaw withdrawal responses. These findings have important implications for preclinical investigations into behavioral alterations and physiological mechanisms associated with postsurgical and neuropathic pain.
Collapse
|
8
|
Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:861-878. [PMID: 31955281 DOI: 10.1007/s10571-020-00785-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Collapse
|