1
|
Kim J, Bae K, Seo JH. Regenerative therapy in geriatric patients with low back pain. Anesth Pain Med (Seoul) 2024; 19:185-193. [PMID: 39118332 PMCID: PMC11317314 DOI: 10.17085/apm.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Low back pain (LBP) is a prevalent and debilitating condition, particularly among older adults, with degenerative spinal disease being a major contributor. Regenerative therapy, which aims to repair and regenerate damaged spinal structures, has shown promise in providing long-term pain relief and functional improvement. This review focuses on the application and efficacy of regenerative therapies such as mesenchymal stem cells, platelet-rich plasma, and atelocollagen in older patients with LBP. Despite the potential benefits, there is a notable scarcity of studies specifically targeting the older population, and those available often have small sample sizes and limited age-related analyses. Our findings underscore the need for more comprehensive and well-designed clinical trials to evaluate the effectiveness of these therapies in older patients. Future research should prioritize larger age-specific studies to establish regenerative therapy as a viable and effective treatment option for LBP in the aging population.
Collapse
Affiliation(s)
- Jeongsoo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kunjin Bae
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jeong Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wang H. The Potential of Collagen Treatment for Comorbid Diseases. Polymers (Basel) 2023; 15:3999. [PMID: 37836047 PMCID: PMC10574914 DOI: 10.3390/polym15193999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Collagen, the most abundant protein in our bodies, plays a crucial role in maintaining the structural integrity of various tissues and organs. Beyond its involvement in skin elasticity and joint health, emerging research suggests that collagen may significantly impact the treatment of complex diseases, particularly those associated with tissue damage and inflammation. The versatile functions of collagen, including skin regeneration, improving joint health, and increasing bone strength, make it potentially useful in treating different diseases. To the best of my knowledge, the strategy of using collagen to treat comorbid diseases has not been widely studied. This paper aims to explore the potential of collagen in treating comorbid diseases, including rheumatoid arthritis, osteoarthritis, osteoporosis, psoriatic arthritis, sarcopenia, gastroesophageal reflux, periodontitis, skin aging, and diabetes mellitus. Collagen-based therapies have shown promise in managing comorbidities due to their versatile properties. The multifaceted nature of collagen positions it as a promising candidate for treating complex diseases and addressing comorbid conditions. Its roles in wound healing, musculoskeletal disorders, cardiovascular health, and gastrointestinal conditions highlight the diverse therapeutic applications of collagen in the context of comorbidity management.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Tarantino D, Mottola R, Palermi S, Sirico F, Corrado B, Gnasso R. Intra-Articular Collagen Injections for Osteoarthritis: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4390. [PMID: 36901400 PMCID: PMC10001647 DOI: 10.3390/ijerph20054390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is the most frequent degenerative progressive joint disease worldwide, with the hand, hip, and knee being the most-affected joints. Actually, no treatment can alter the course of OA, and therapy is directed at reducing pain and improving function. The exogenous administration of collagen has been investigated as a possible symptomatic adjuvant or stand-alone treatment for OA. The aim of this review is to assess if intra-articular collagen administration can be considered as a valid and safe therapeutic option for OA. A search in the main scientific electronic databases to identify the available scientific articles about the effects of intra-articular collagen as an OA treatment was performed. The results of the seven included studies showed that the intra-articular administration of collagen may stimulate chondrocytes to produce hyaline cartilage and hinder the normal inflammatory response leading to fibrous tissue formation, reducing symptoms, and improving functionality. The use of type-I collagen as an intra-articular treatment for knee OA was found not only to be effective, but also safe with negligible side effects. The reported findings are strongly promising, highlighting the need for further high-quality research to confirm the consistency of these findings.
Collapse
|
4
|
Park JH, Ahn M, Park SH, Kim H, Bae M, Park W, Hollister SJ, Kim SW, Cho DW. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials 2021; 279:121246. [PMID: 34775331 PMCID: PMC8663475 DOI: 10.1016/j.biomaterials.2021.121246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Despite notable advances in extrusion-based 3D bioprinting, it remains a challenge to create a clinically-sized cellular construct using extrusion-based 3D printing due to long printing times adversely affecting cell viability and functionality. Here, we present an advanced extrusion-based 3D bioprinting strategy composed of a two-step printing process to facilitate creation of a trachea-mimetic cellular construct of clinically relevant size. A porous bellows framework is first printed using typical extrusion-based 3D printing. Selective printing of cellular components, such as cartilage rings and epithelium lining, is then performed on the outer grooves and inner surface of the bellows framework by a rotational printing process. With this strategy, 3D bioprinting of a trachea-mimetic cellular construct of clinically relevant size is achieved in significantly less total printing time compared to a typical extrusion-based 3D bioprinting strategy which requires printing of an additional sacrificial material. Tracheal cartilage formation was successfully demonstrated in a nude mouse model through a subcutaneous implantation study of trachea-mimetic cellular constructs wrapped with a sinusoidal-patterned tubular mesh preventing rapid resorption of cartilage rings in vivo. This two-step 3D bioprinting for a trachea-mimetic cellular construct of clinically relevant size can provide a fundamental step towards clinical translation of 3D bioprinting based tracheal reconstruction.
Collapse
Affiliation(s)
- Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Minjun Ahn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 137-710, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 137-710, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.
| |
Collapse
|