1
|
Igarashi Y, Kojima N, Takemura W, Liu X, Morita T, Mizukami Y, Enoki Y, Taguchi K, Yokoyama Y, Nakamura T, Matsumoto K. In vivo Pharmacokinetics/Pharmacodynamics Profiles for Appropriate Doses of Cefditoren pivoxil against S. pneumoniae in Murine Lung-Infection Model. Pharm Res 2023; 40:1789-1797. [PMID: 37253866 DOI: 10.1007/s11095-023-03539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Cefditoren, the active form of cefditoren pivoxil, is an oral cephalosporin antimicrobial drug. Although cefditoren exhibits high antimicrobial activity against Streptococcus pneumoniae, its pharmacokinetics/pharmacodynamics (PK/PD) characteristics remain unknown. This study aimed to determine its PK/PD parameter with target values for cefditoren against S. pneumoniae in S. pneumoniae lung-infected mice and to simulate MIC range of S. pneumoniae that can be expected to be treated at approved cefditoren doses in human using population pharmacokinetic (PPK) data from patients. METHODS Susceptibility testing and time-kill assays against S. pneumoniae ATCC® 49619 were performed for in vitro PD evaluation. Based on the results of a PK study in healthy mice and PD studies in S. pneumoniae lung-infected mice, optimal PK/PD parameters were determined using the correlation curve between the PK/PD parameters and lung bacterial count changes. The target value was calculated to achieve a 2 log10 reduction in the lung bacterial counts. RESULTS In vitro PD evaluation showed that cefditoren had a potent antimicrobial effect against S. pneumoniae in a time-dependent manner at concentrations above the MIC. In PK/PD analyses, both fAUC24/MIC and fCmax/MIC were well correlated with bactericidal efficacy, achieving 2 log10-kill with fAUC24/MIC ≥ 63 and fCmax/MIC ≥ 16. CONCLUSIONS Cefditoren pivoxil has good therapeutic efficacy against acute pneumonia caused by S. pneumoniae with a MIC ≤ 0.031-0.063 mg/L at approved doses in adults and children.
Collapse
Affiliation(s)
- Yuki Igarashi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Nana Kojima
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Wataru Takemura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Takumi Morita
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Yuki Mizukami
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| |
Collapse
|
2
|
Kumar KM, Anbarasu A, Ramaiah S. Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. MOLECULAR BIOSYSTEMS 2014; 10:891-900. [PMID: 24503740 DOI: 10.1039/c3mb70537d] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial resistance to β-lactam antibiotics poses a serious threat to human health. Penicillin binding proteins (PBPs) and β-lactamases are involved in both antibacterial activity and mediation of β-lactam antibiotic resistance. The two major reasons for resistance to β-lactams include: (i) pathogenic bacteria expressing drug insensitive PBPs rendering β-lactam antibiotics ineffective and (ii) production of β-lactamases along with alteration of their specificities. Thus, there is an urgent need to develop newer β-lactams to overcome the challenge of bacterial resistance. Therefore the present study aims to identify the binding affinity of β-lactam antibiotics with different types of PBPs and β-lactamases. In this study, cephalosporins and carbapenems are docked into PBP2a of Staphylococcus aureus, PBP2b and PBP2x of Streptococcus pneumoniae and SHV-1 β-lactamase of Escherichia coli. The results reveal that Ceftobiprole can efficiently bind to PBP2a, PBP2b and PBP2x and not strongly to SHV-1 β-lactamase. Furthermore, molecular dynamics (MD) simulations are performed to refine the binding mode of the docked complex structure and to observe the differences in the stability of free PBP2x and Ceftobiprole bound PBP2x. MD simulation supports the greater stability of the Ceftobiprole-PBP2x complex compared to free PBP2x. This work demonstrates that potential β-lactam antibiotics can efficiently bind to different types of PBPs for circumventing β-lactam resistance and opens avenues for the development of newer antibiotics that can target bacterial pathogens.
Collapse
Affiliation(s)
- K M Kumar
- School of Biosciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
3
|
Yamada M, Watanabe T, Miyara T, Baba N, Saito J, Takeuchi Y, Ohsawa F. Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity. Antimicrob Agents Chemother 2007; 51:3902-7. [PMID: 17724158 PMCID: PMC2151468 DOI: 10.1128/aac.00743-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefditoren is the active form of cefditoren pivoxil, an oral cephalosporin antibiotic used for the treatment of respiratory tract infections and otitis media caused by bacteria such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes, Klebsiella pneumoniae, and methicillin-susceptible strains of Staphylococcus aureus. Beta-lactam antibiotics, including cefditoren, target penicillin-binding proteins (PBPs), which are membrane-associated enzymes that play essential roles in the peptidoglycan biosynthetic process. To envision the binding of cefditoren to PBPs, we determined the crystal structure of a trypsin-digested form of PBP 2X from S. pneumoniae strain R6 complexed with cefditoren. There are two PBP 2X molecules (designated molecules 1 and 2) per asymmetric unit. The structure reveals that the orientation of Trp374 in each molecule changes in a different way upon the formation of the complex, but each forms a hydrophobic pocket. The methylthiazole group of the C-3 side chain of cefditoren fits into this binding pocket, which consists of residues His394, Trp374, and Thr526 in molecule 1 and residues His394, Asp375, and Thr526 in molecule 2. The formation of the complex is also accompanied by an induced-fit conformational change of the enzyme in the pocket to which the C-7 side chain of cefditoren binds. These features likely play a role in the high level of activity of cefditoren against S. pneumoniae.
Collapse
Affiliation(s)
- Mototsugu Yamada
- Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | |
Collapse
|