1
|
Ryan KM, Glaviano A, O'Donovan SM, Kolshus E, Dunne R, Kavanagh A, Jelovac A, Noone M, Tucker GM, Dunn MJ, McLoughlin DM. Electroconvulsive therapy modulates plasma pigment epithelium-derived factor in depression: a proteomics study. Transl Psychiatry 2017; 7:e1073. [PMID: 28350398 PMCID: PMC5404616 DOI: 10.1038/tp.2017.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/15/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression, yet its mechanism of action is not fully understood. Peripheral blood proteomic analyses may offer insights into the molecular mechanisms of ECT. Patients with a major depressive episode were recruited as part of the EFFECT-Dep trial (enhancing the effectiveness of electroconvulsive therapy in severe depression; ISRCTN23577151) along with healthy controls. As a discovery-phase study, patient plasma pre-/post-ECT (n=30) was analyzed using 2-dimensional difference in gel electrophoresis and mass spectrometry. Identified proteins were selected for confirmation studies using immunodetection methods. Samples from a separate group of patients (pre-/post-ECT; n=57) and matched healthy controls (n=43) were then used to validate confirmed changes. Target protein mRNA levels were also assessed in rat brain and blood following electroconvulsive stimulation (ECS), the animal model of ECT. We found that ECT significantly altered 121 protein spots with 36 proteins identified by mass spectrometry. Confirmation studies identified a post-ECT increase (P<0.01) in the antiangiogenic and neuroprotective mediator pigment epithelium-derived factor (PEDF). Validation work showed an increase (P<0.001) in plasma PEDF in depressed patients compared with the controls that was further increased post-ECT (P=0.03). PEDF levels were not associated with mood scores. Chronic, but not acute, ECS increased PEDF mRNA in rat hippocampus (P=0.02) and dentate gyrus (P=0.03). This study identified alterations in blood levels of PEDF in depressed patients and further alterations following ECT, as well as in an animal model of ECT. These findings implicate PEDF in the biological response to ECT for depression.
Collapse
Affiliation(s)
- K M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Glaviano
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - S M O'Donovan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - E Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - R Dunne
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Kavanagh
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Jelovac
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - M Noone
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - G M Tucker
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M J Dunn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - D M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James's Street, Dublin 8, Ireland. E-mail:
| |
Collapse
|
2
|
Glaviano A, O'Donovan SM, Ryan K, O'Mara S, Dunn MJ, McLoughlin DM. Acute phase plasma proteins are altered by electroconvulsive stimulation. J Psychopharmacol 2014; 28:1125-34. [PMID: 25271216 DOI: 10.1177/0269881114552742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electroconvulsive therapy (ECT) is an effective antidepressant treatment, but its molecular mechanisms of action remain to be fully elucidated. To better understand the effects of ECT, we conducted a proteomic study to characterize global changes in plasma protein abundance induced by electroconvulsive stimulation (ECS) in the animal model equivalent of ECT. Male Sprague-Dawley rats were administered a single or repeat (10 sessions) course of ECS, and compared with sham-ECS administered animals. Quantitative differential protein expression analysis was performed, using 2-dimensional difference in gel electrophoresis (2D DiGE), on immunodepleted plasma. Proteins were selected for identification by liquid chromatography tandem mass spectrometry (LC-MS/MS): 150 protein spots were significantly altered following a single ECS and 178, following repeated ECS. In total, 18 proteins were identified by LC-MS/MS. Many of these were acute-phase response proteins, previously reported to be increased in depressed patients. Changes in the abundance of two proteins of interest were confirmed by other measures. Repeat ECS was found to significantly reduce plasma levels of haptoglobin and apolipoprotein A-IV, although these changes were no longer evident 4 weeks after the repeated ECS. Our results implicate the immune system-induced acute phase protein response in ECS action while identifying potential plasma biomarkers for ECS.
Collapse
Affiliation(s)
- Antonino Glaviano
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sinead M O'Donovan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Karen Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael J Dunn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland Department of Psychiatry, Saint Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
O'Donovan SM, O'Mara S, Dunn MJ, McLoughlin DM. The persisting effects of electroconvulsive stimulation on the hippocampal proteome. Brain Res 2014; 1593:106-16. [PMID: 25451099 DOI: 10.1016/j.brainres.2014.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/23/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023]
Abstract
Electroconvulsive therapy (ECT) is the most acutely effective treatment available for severe depression. However, its mechanism of action is not fully understood. Elucidating the protein changes induced in the brain by ECT will enhance our understanding of this antidepressant therapy. Electroconvulsive stimulation (ECS), the animal analogue of ECT, was administered to rats to determine the proteomic changes induced in the hippocampus, a region of the brain implicated in the biology of depression and its treatment. Two-dimensional difference in gel electrophoresis (2D-DiGE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods were applied to identify differentially expressed proteins following acute (×1 treatment), chronic (×10 treatments) or chronic(+4 weeks) (×10 treatments plus 4 weeks later) ECS. Administration of acute, chronic and chronic(+4 weeks) ECS induced significant changes in multiple DiGE gel protein spots. Interestingly, the largest number of differentially expressed protein spots was identified following chronic(+4 weeks) ECS. Following protein identification by LC-MS/MS, gene ontology analysis primarily implicated proteins with cytoskeletal and metabolism-related roles in the action of ECS. Immunoblotting confirmed the changes in abundance of the cytoskeletal protein actin following chronic(+4 weeks) ECS. Overall, chronic(+4 weeks) ECS was particularly effective at inducing longer-lasting changes in the abundance of hippocampal proteins with cytoskeletal and metabolism roles. These results suggest a role for persisting cytoskeletal-related neuroplastic changes in the action of ECS and may be informative as to the antidepressant mechanisms of ECT in patients with depression.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michael J Dunn
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick׳s University Hospital, James׳s Street, Dublin 8, Ireland.
| |
Collapse
|
4
|
Chao YL, Chen HH, Chen CH. Effects of repeated electroconvulsive shock on methamphetamine-induced behavioral abnormalities in mice. Brain Stimul 2012; 5:393-401. [DOI: 10.1016/j.brs.2011.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/07/2011] [Accepted: 04/18/2011] [Indexed: 11/25/2022] Open
|