1
|
Zhu W, Song S, Xu Y, Sheng H, Wang S. EMP3: A promising biomarker for tumor prognosis and targeted cancer therapy. Cancer Biomark 2024; 40:227-239. [PMID: 39213053 PMCID: PMC11380316 DOI: 10.3233/cbm-230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epithelial membrane protein 3 (EMP3) belongs to the peripheral myelin protein 22 kDa (PMP22) gene family, characterized by four transmembrane domains and widespread expression across various human tissues and organs. Other members of the PMP22 family, including EMP1, EMP2, and PMP22, have been linked to various cancers, such as glioblastoma, laryngeal cancer, nasopharyngeal cancer, gastric cancer, breast cancer, and endometrial cancer. However, few studies report on the function and relevance of EMP3 in tumorigenicity. Given the significant structural similarities among members of the PMP22 family, there are likely potential functional similarities as well. Previous studies have established the regulatory role of EMP3 in immune cells like T cells and macrophages. Additionally, EMP3 is found to be involved in critical signaling pathways, including HER-2/PI3K/Akt, MAPK/ERK, and TGF-beta/Smad. Furthermore, EMP3 is associated with cell cycle regulation, cellular proliferation, and apoptosis. Hence, it is likely that EMP3 participates in cancer development through these aforementioned pathways and mechanisms. This review aims to systematically examine and summarize the structure and function of EMP3 and its association to various cancers. EMP3 is expected to emerge as a significant biological marker for tumor prognosis and a potential target in cancer therapeutics.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shu Song
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hanyue Sheng
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Cha YJ, Koo JS. Expression of EMP 1, 2, and 3 in Adrenal Cortical Neoplasm and Pheochromocytoma. Int J Mol Sci 2023; 24:13016. [PMID: 37629198 PMCID: PMC10455306 DOI: 10.3390/ijms241613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to investigate the expression of the epithelial membrane proteins (EMP) 1, 2, and 3 in adrenal gland neoplasm and to explore the broader implications of this. Tissue microarrays were constructed for 132 cases of adrenal cortical neoplasms (ACN) (adrenal cortical adenoma (115 cases), and carcinoma (17 cases)) and 189 cases of pheochromocytoma. Immunohistochemical staining was performed to identify EMP 1, 2, and 3, and was compared with clinicopathological parameters. The H-score of EMP 3 (p < 0.001) was higher in pheochromocytoma when compared to that of ACN, and the H-score of EMP 1 (p < 0.001) and EMP 3 (p < 0.001) was higher in adrenal cortical carcinomas when compared to that of adrenal cortical adenomas. A higher EMP 1 H-score was observed in pheochromocytomas with a GAPP score ≥3 (p = 0.018). In univariate analysis, high levels of EMP 1 and EMP 3 expression in ACN were associated with shorter overall survival (p = 0.001). Differences were observed in the expression of EMPs between ACN and pheochromocytoma. EMPs are associated with malignant tumor biology in adrenal cortical neoplasm and pheochromocytoma, suggesting the role of a prognostic and/or predictive factor for EMPs in adrenal tumor.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea;
| |
Collapse
|
3
|
The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma. Int J Mol Sci 2021; 22:ijms22105261. [PMID: 34067658 PMCID: PMC8156612 DOI: 10.3390/ijms22105261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
Epithelial membrane protein 3 (EMP3) is a tetraspan membrane protein overexpressed in isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma (GBM). Several studies reported high EMP3 levels as a poor prognostic factor in GBM patients. Experimental findings based on glioma and non-glioma models have demonstrated the role of EMP3 in the regulation of several membrane proteins known to drive IDH-wt GBM. In this review, we summarize what is currently known about EMP3 biology. We discuss the regulatory effects that EMP3 exerts on a variety of oncogenic receptors and discuss how these mechanisms may relate to IDH-wt GBM. Lastly, we enumerate the open questions towards EMP3 function in IDH-wt GBM.
Collapse
|
4
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
5
|
Christians A, Poisel E, Hartmann C, von Deimling A, Pusch S. Characterization of the epithelial membrane protein 3 interaction network reveals a potential functional link to mitogenic signal transduction regulation. Int J Cancer 2019; 145:461-473. [PMID: 30614533 DOI: 10.1002/ijc.32107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Epithelial Membrane Protein 3 (EMP3), a 4-transmembrane glycoprotein, first gained attention as a putative tumor suppressor. Accumulating evidence, however, points to a more tumor promotive function of EMP3. The biological function of EMP3 remains largely unclear. To elucidate more of EMP3's interaction network, we performed a Yeast-Two-Hybrid (Y2H) screening, followed by validation of candidate interactors by Biomolecular Fluorescence Complementation (BiFC) and Proximity Ligation Assay (PLA). Furthermore, we generated stable EMP3 knockdown cell lines and measured cell proliferation, migration and sensitivity to apoptosis induction as well as the expression and activation levels of important signal pathway components. The Y2H screening yielded 10 novel interactions of EMP3, eight of which could also be detected by BiFC and PLA interaction assays. All newly discovered interaction partners are involved in signaling or trafficking regulation. Most notably, FLOT1 and HTATIP2 have well described roles in the regulation of EGFR signaling. In addition, knockdown of EMP3 resulted in reduced levels of p-AKT, p-ERK and p-EGFR, attenuated cell proliferation and migration and sensitized cells to apoptosis induction by TRAIL and Staurosporine. Based on these observations we hypothesize that EMP3 might be involved in the regulation of receptor-tyrosine-kinase mediated mitogenic signaling.
Collapse
Affiliation(s)
- Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Eric Poisel
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Grassi TF, Bidinotto LT, Lopes GAD, Zapaterini JR, Rodrigues MAM, Barbisan LF. Maternal western-style diet enhances the effects of chemically-induced mammary tumors in female rat offspring through transcriptome changes. Nutr Res 2018; 61:41-52. [PMID: 30683438 DOI: 10.1016/j.nutres.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that early life intake of high-fat diet or western-style diet (WD) enhances the development of mammary tumors in adult female rats. Thus, we hypothesized that maternal WD throughout pregnancy and the lactation period could speed up the development of MNU-induced mammary tumors and alter their gene expression. For this, the present study investigated the gene expression profile of chemically-induced mammary tumors in female rat offspring from dams fed a WD or a control diet. Pregnant female Sprague-Dawley rats received a WD (high-fat, low-fiber and oligoelements) or a control diet from gestational day 12 until post-natal day (PND) 21. At PND 21, female offspring received a single dose of N-Methyl-N-Nitrosourea (MNU, 50 mg/kg body weight) and were fed a control diet for 13 weeks. Tumor incidence, multiplicity, and latency were recorded and mammary gland samples were collected for histopathology and gene expression analysis. Tumor multiplicity and histological grade were significantly higher and tumor latency was lower in WD offspring compared to control offspring. Transcriptome profiling identified 57 differentially expressed genes in tumors from WD offspring as compared to control offspring. There was also an increase in mRNA expression of genes such as Emp3, Ccl7, Ets1, Abcc5, and Cyr61, indicative of more aggressive disease detected in tumors from WD offspring. Thus, maternal WD diet increased MNU-induced mammary carcinogenesis in adult female offspring through transcriptome changes that resulted in a more aggressive disease.
Collapse
Affiliation(s)
- Tony F Grassi
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata -FACISB, Barretos 14785-002, SP, Brazil
| | - Gisele A D Lopes
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Joyce R Zapaterini
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Maria A M Rodrigues
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Luís F Barbisan
- UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil.
| |
Collapse
|
7
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Zheng Z, Luan X, Zha J, Li Z, Wu L, Yan Y, Wang H, Hou D, Huang L, Huang F, Zheng H, Ge L, Guan H. TNF-α inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis. Cell Signal 2017; 34:102-109. [PMID: 28336231 DOI: 10.1016/j.cellsig.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
Whereas TNF-α can facilitate the metastasis of oral squamous cancer cells (OSCC), whether it inhibits the metastasis is not clear so far. In this study, we demonstrated that high dose TNF-α at 100ng/mL could in vitro significantly inhibit the migration of two OSCC cell lines, CAL-27 and SCC-25. To explore the related mechanisms, we focused on the involvement of the microRNAs and found that TNF-α increased the expression of miR-765. The upregulation of miR-765 was attributed to the inhibition of the migration. We showed that miR-765 directly targeted EMP3 and suppressed its expression. We also found that the expression of EMP3 was much higher in human oral squamous cancer in compare with the surrounding normal tissue. Interestingly, p66Shc, a downstream molecule in the EMP3-related signaling pathway, was increased by TNF-α. We found that the overexpression of p66Shc could suppress the migration through the enhanced E-cadherin and ZO-1 signals. Either silencing the expression of EMP3 or enhancing the expression of miR-765 could upregulate the expression of p66Shc. Together, our results demonstrated that TNF-α inhibited the metastasis of oral squamous cancer cell through the miR-765-EMP3-p66Shc axis, which may provide new insights for the therapy of oral squamous cancer.
Collapse
Affiliation(s)
- Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Xiuwen Luan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Haiyan Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Dan Hou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Feng Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Huade Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, China; South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
9
|
Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway. Oncotarget 2016; 6:34859-74. [PMID: 26472188 PMCID: PMC4741495 DOI: 10.18632/oncotarget.5414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC.
Collapse
|
10
|
Hong XC, Fen YJ, Yan GC, Hong H, Yan CH, Bing LW, Zhong YH. Epithelial membrane protein 3 functions as an oncogene and is regulated by microRNA-765 in primary breast carcinoma. Mol Med Rep 2015; 12:6445-50. [PMID: 26398721 PMCID: PMC4626151 DOI: 10.3892/mmr.2015.4326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/10/2015] [Indexed: 01/11/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is a transmembrane signaling molecule, which is important in the regulation of apoptosis, differentiation and invasion of cancer cells. However, the specific function and regulatory mechanism of EMP3 in primary breast carcinoma remain to be elucidated. In the present study, the mRNA and protein levels of EMP3 were observed to be upregulated in primary breast carcinoma tissues, compared with normal tissues. It was hypothesized that the overexpression of EMP3 was correlated with the downregulation of microRNA‑765 (miR‑765), an underexpressed miRNA in primary breast carcinoma tissues. Functional analysis demonstrated that EMP3 was regulated by miR‑765 through binding to its 3'untranslated region. In addition, the knockdown of EMP3 and miR‑765 had similar effects on the inhibition of proliferation and invasion in SK‑BR‑3 cells. These results provided novel insight into the regulatory mechanism of EMP3 in primary breast carcinoma.
Collapse
Affiliation(s)
- Xiao Chun Hong
- Department of Clinical Laboratory, Nantong Cancer Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yuan Jian Fen
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Guo Chun Yan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Hong Hong
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Cao Hong Yan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Li Wei Bing
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yu Hai Zhong
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
11
|
Abstract
The GAS3 family of tetraspan proteins has recently been implicated in the progression of cancer. Currently, six members of the GAS3 family have been identified in humans and mice, and while their expressions in disease vary, data suggest that they play a role in epithelial cell structure and function. In this review, we highlight the studies implicating four of the members in disease pathogenesis as well as probe the structural similarities between the family members. Finally, the impact of targeting select members of the family such as PMP22 and EMP2 is discussed.
Collapse
Affiliation(s)
- Negin Ashki
- Department of Ophthalmology, Jules Stein Eye Institute, Los Angeles, CA
| | - Lynn Gordon
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Madhuri Wadehra
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Address all correspondence to: Madhuri Wadehra, PhD, Pathology and Lab Medicine, 14-127 Center for Health Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Tel.: 310-825-1590; Fax: 310-825-5674;
| |
Collapse
|
12
|
Wang YW, Li WM, Wu WJ, Chai CY, Liu HS, Lai MD, Chow NH. Potential significance of EMP3 in patients with upper urinary tract urothelial carcinoma: crosstalk with ErbB2-PI3K-Akt pathway. J Urol 2013; 192:242-51. [PMID: 24333112 DOI: 10.1016/j.juro.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Upper urinary tract (pyelocalyceal cavities and ureter) urothelial carcinoma is a relatively rare neoplastic disease. Although diagnosis and treatment of this tumor variant have improved significantly, accurate risk stratification remains a challenge. To identify the putative oncogene involved in urothelial carcinoma progression we performed bioinformatics guided experimental investigation targeting chromosome 19q13. MATERIALS AND METHODS We investigated the effects of EMP3 on cancer cell growth, migration and adhesion in transfection and siRNA experiments in vitro. Crosstalk of integrins or ErbB2 with EMP3 was examined by reverse transcriptase-polymerase chain reaction and immunoblot. The potential involvement of epigenetic alterations of EMP3 in vitro and in vivo was analyzed by methylation specific polymerase chain reaction. To validate clinical relevance we measured EMP3 expression at the mRNA and protein levels in a cohort of 77 patients with upper urinary tract urothelial carcinoma and compared prognostic significance in relation to that of ErbB2 expression. RESULTS We noted functional crosstalk between ErbB2 and EMP3 in vitro. EMP3 over expression promoted cancer cell proliferation and migration but suppressed cell adhesion in vitro. EMP3 activated the ErbB2-PI3K-AKT pathway to increase cell growth in vitro. In the clinical cohort Kaplan-Meier survival estimates showed that ErbB2 and EMP3 co-expression was the most important indicator of progression-free and metastasis-free survival in patients with upper urinary tract urothelial carcinoma (log rank test p = 0.018 and 0.04, respectively). CONCLUSIONS EMP3 is an important prognostic indicator for selecting patients with upper urinary tract urothelial carcinoma for more intensive therapy. EMP3 is an innovative co-targeting candidate for designing ErbB2 based cancer therapy.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China; Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China; Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
13
|
Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas. BIOMED RESEARCH INTERNATIONAL 2013; 2013:756302. [PMID: 24083241 PMCID: PMC3776370 DOI: 10.1155/2013/756302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/26/2013] [Accepted: 07/10/2013] [Indexed: 01/29/2023]
Abstract
The epithelial membrane protein 3 (EMP3) is a candidate tumor suppressor gene in the critical region 19q13.3 for several solid tumors, including tumors of the nervous systems.
The aim of this study was to investigate the EMP3 promoter hypermethylation status in a series of 229 astrocytic and oligodendroglial tumors and in 16 GBM cell lines. The analysis was performed by methylation-specific PCR and capillary electrophoresis. Furthermore, the EMP3 expression at protein level was evaluated by immunohistochemistry and Western blotting analysis. Associations of EMP3 hypermethylation with total 1p/19q codeletion, MGMT promoter hypermethylation, IDH1/IDH2 and TP53 mutations, and EGFR amplification were studied, as well as its prognostic significance. The EMP3 promoter hypermethylation has been found in 39.5% of gliomas. It prevailed in low-grade tumors, especially in gliomas with an oligodendroglial component, and in sGBMs upon pGBMs. In oligodendroglial tumors, it was strongly associated with both IDH1/IDH2 mutations and total 1p/19q codeletion and inversely with EGFR gene amplification. No association was found with MGMT hypermethylation and TP53 mutations. In the whole series, the EMP3 hypermethylation status correlated with 19q13.3 loss and lack of EMP3 expression at protein level. A favorable prognostic significance on overall survival of the EMP3 promoter hypermethylation was found in patients with oligodendroglial tumors.
Collapse
|
14
|
Xue Q, Zhou Y, Wan C, Lv L, Chen B, Cao X, Ju G, Huang Y, Ni R, Mao G. Epithelial membrane protein 3 is frequently shown as promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. Exp Mol Pathol 2013; 95:313-8. [PMID: 23920144 DOI: 10.1016/j.yexmp.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/06/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Epithelial membrane protein 3 (EMP3) is a typical member of the epithelial membrane protein (EMP) family which has been reported to be a tumor suppressor gene in neuroblastomas and gliomas and recently reported to be commonly repressed in esophageal squamous cell carcinoma (ESCC) cell lines. However, the expression and clinical significance of EMP3 protein in lung cancer have not yet been elucidated. In this article, we detected that the expression of EMP3 in non-small cell lung cancer was significantly lower than the expression of normal lung tissues (P < 0.01) by western blot. EMP3 expression in Lung cancer was significantly related to p-TNM stage (P < 0.05) and EMP3 was negatively correlated with proliferation marker Ki67(r = -0.775; P < 0.01), However, no significant correlations were found between EMP3 and other clinical parameters. The post-recurrent survival after radical surgery was poorer in lung cancer patients with lower EMP3 expression (P < 0.01). While in vitro, following release from serum starvation of A549 NSCLC cell, the expression of EMP3 was deregulated. Thus, our finding suggests that EMP3 may be a tumor suppressor gene at the late step of lung cancer, and EMP3 may be a potential prognostic marker and therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:235-52. [PMID: 20521089 DOI: 10.1007/s10911-010-9175-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/20/2010] [Indexed: 02/06/2023] Open
Abstract
We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44(high)CD24(low). Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.
Collapse
Affiliation(s)
- Tony Blick
- Invasion and Metastasis Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, Melbourne 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fumoto S, Tanimoto K, Hiyama E, Noguchi T, Nishiyama M, Hiyama K. EMP3as a candidate tumor suppressor gene for solid tumors. Expert Opin Ther Targets 2009; 13:811-22. [DOI: 10.1517/14728220902988549] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Kim SS, Choi YH, Han CW, Choi YD, Park Y, Lee JJ, Kim HJ, Lee IK, Lee JS, Juhng SW, Choi C. DNA Methylation Profiles of MGMT, DAPK1, hMLH1, CDH1, SHP1, and HIC1 in B-Cell Lymphomas. KOREAN JOURNAL OF PATHOLOGY 2009. [DOI: 10.4132/koreanjpathol.2009.43.5.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Hyo Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Woo Han
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Yoo Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Youngkyu Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Je Jung Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hyeoung Joon Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Il Kwon Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Woo Juhng
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|