Liu YH, Gong Q, Wang YK, Shuang WB. Time-Dependent Changes in the Bladder Muscle Metabolome After Traumatic Spinal Cord Injury in Rats Using Metabolomics.
Int Neurourol J 2023;
27:88-98. [PMID:
37401019 DOI:
10.5213/inj.2346068.034]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
PURPOSE
The main treatment options of neurogenic bladder remains catheterization and long-term oral medications. Metabolic interventions have shown good therapeutic results in many diseases. To date, no studies have characterized the metabolites of the detrusor muscle during neurogenic bladder. Using metabolomics, new muscle metabolomic signatures were identified to reveal the temporal metabolic profile of muscle during disease progression.
METHODS
We used 42 Sprague-Dawley rats (200±20 g, males) for T10 segmental spinal cord injury modeling and collected detrusor tissue and performed nontargeted metabolomics after sham surgery, 30-minute, 6-hour, 12-hour, 24-hour, 5-day, and 2-week postmodelling, to identify the dysregulated metabolic pathways and key metabolites.
RESULTS
By comparing mzCloud, mzVault, MassList, we identified a total of 1,271 metabolites and enriched a total of 12 metabolism-related pathways with significant differences (P<0.05) based on Kyoto Encyclopedia of Genes and Genomes analysis. Metabolites in several differential metabolic pathways such as ascorbate and aldarate metabolism, Steroid hormone biosynthesis, and carbon metabolism are altered in a regular manner before and after ridge shock.
CONCLUSION
Our study is the first time-based metabolomic study of rat forced urinary muscle after traumatic spinal cord injury, and we identified multiple differential metabolic pathways during injury that may improve long-term management strategies for neurogenic bladder and reduce costs in long-term treatment.
Collapse