1
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. New insights into the potential cardioprotective effects of telmisartan and nanoformulated extract of Spirulina platensis via regulation of oxidative stress, apoptosis, and autophagy in an experimental model. Front Pharmacol 2024; 15:1380057. [PMID: 38783939 PMCID: PMC11112102 DOI: 10.3389/fphar.2024.1380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background Cardiotoxicity is one of the limiting side effects of the commonly used anticancer agent cyclophosphamide (Cyclo). Materials and methods The possible protective effects of telmisartan and nanoformulated Spirulina platensis (Sp) methanolic extract against Cyclo-induced cardiotoxicity were examined in this study. Experimental groups of rats were randomly divided into nine groups as control vehicle, control polymer, telmisartan (TEL, 10 mg/kg), free Sp extract (300 mg/kg), nano Sp extract (100 mg/kg), Cyclo (200 mg/kg), TEL + Cyclo, free Sp + Cyclo, and nano Sp + Cyclo. The groups with Cyclo combinations were treated in the same manner as their corresponding ones without Cyclo, with a single dose of Cyclo on day 18. Results The results indicate that Cyclo causes significant cardiotoxicity, manifesting in the form of notable increases of 155.49%, 105.74%, 451.76%, and 826.07% in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), and cardiac troponin I (cTnI) enzyme activities, respectively, as compared to the control. In addition, the cardiac glutathione (GSH) content and activity of glutathione peroxidase-1 (GPX-1) enzyme decreased by 65.94% and 73.85%, respectively. Treatment with nano Sp extract showed the most prominent restorations of the altered biochemical, histopathological, and immunohistochemical features as compared with those by TEL and free Sp; moreover, reductions of 30.64% and 43.02% in the p-AKT content as well as 60.43% and 75.30% of the endothelial nitric oxide synthase (eNOS) immunoreactivity were detected in the TEL and free Sp treatment groups, respectively. Interestingly, nano Sp boosted the autophagy signal via activation of beclin-1 (36.42% and 153.4%), activation of LC3II (69.13% and 195%), downregulation of p62 expressions (39.68% and 62.45%), and increased gene expressions of paraoxonase-1 (PON-1) (90.3% and 225.9%) compared to the TEL and free Sp treatment groups, respectively. Conclusion The findings suggest the protective efficiency of telmisartan and nano Sp extract against cardiotoxicity via activations of the antioxidant, antiapoptotic, and autophagy signaling pathways.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Hwang YJ, Park JH, Cho DH. Far-Infrared Irradiation Decreases Proliferation in Basal and PDGF-Stimulated VSMCs Through AMPK-Mediated Inhibition of mTOR/p70S6K Signaling Axis. J Korean Med Sci 2023; 38:e335. [PMID: 37873631 PMCID: PMC10593596 DOI: 10.3346/jkms.2023.38.e335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Far-infrared (FIR) irradiation has been reported to improve diverse cardiovascular diseases, including heart failure, hypertension, and atherosclerosis. The dysregulated proliferation of vascular smooth muscle cells (VSMCs) is well established to contribute to developing occlusive vascular diseases such as atherosclerosis and in-stent restenosis. However, the effects of FIR irradiation on VSMC proliferation and the underlying mechanism are unclear. This study investigated the molecular mechanism through which FIR irradiation inhibited VSMC proliferation. METHODS We performed cell proliferation and cell death assay, adenosine 5'-triphosphate (ATP) assay, inhibitor studies, transfection of dominant negative (dn)-AMP-activated protein kinase (AMPK) α1 gene, and western blot analyses. We also conducted confocal microscopic image analyses and ex vivo studies using isolated rat aortas. RESULTS FIR irradiation for 30 minutes decreased VSMC proliferation without altering the cell death. Furthermore, FIR irradiation accompanied decreases in phosphorylation of the mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389). The phosphorylation of AMPK at Thr172 (p-AMPK-Thr172) was increased in FIR-irradiated VSMCs, which was accompanied by a decreased cellular ATP level. Similar to in vitro results, FIR irradiation increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448 and p-p70S6K-Thr389 in isolated rat aortas. Pre-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of dn-AMPKα1 gene, significantly reversed FIR irradiation-decreased VSMC proliferation, p-mTOR-Ser2448, and p-p70S6K-Thr389. On the other hand, hyperthermal stimulus (39°C) did not alter VSMC proliferation, cellular ATP level, and AMPK/mTOR/p70S6K phosphorylation. Finally, FIR irradiation attenuated platelet-derived growth factor (PDGF)-stimulated VSMC proliferation by increasing p-AMPK-Thr172, and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in PDGF-induced in vitro atherosclerosis model. CONCLUSION These results show that FIR irradiation decreases the basal and PDGF-stimulated VSMC proliferation, at least in part, by the AMPK-mediated inhibition of mTOR/p70S6K signaling axis irrespective of its hyperthermal effect. These observations suggest that FIR therapy can be used to treat arterial narrowing diseases, including atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Yun-Jin Hwang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | - Du-Hyong Cho
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea.
| |
Collapse
|
3
|
Reus P, Schneider AK, Ulshöfer T, Henke M, Bojkova D, Cinatl J, Ciesek S, Geisslinger G, Laux V, Grättinger M, Gribbon P, Schiffmann S. Characterization of ACE Inhibitors and AT 1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model. Life (Basel) 2021; 11:life11080810. [PMID: 34440554 PMCID: PMC8399150 DOI: 10.3390/life11080810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Blood-pressure-lowering drugs are proposed to foster SARS-CoV-2 infection by pharmacological upregulation of angiotensin-converting enzyme 2 (ACE2), the binding partner of the virus spike (S) protein, located on the surface of the host cells. Conversely, it is postulated that angiotensin–renin system antagonists may prevent lung damage caused by SARS-CoV-2 infection, by reducing angiotensin II levels, which can induce permeability of lung endothelial barrier via its interaction with the AT1 receptor (AT1R). Methods: We have investigated the influence of the ACE inhibitors (lisinopril, captopril) and the AT1 antagonists (telmisartan, olmesartan) on the level of ACE2 mRNA and protein expression as well as their influence on the cytopathic effect of SARS-CoV-2 and on the cell barrier integrity in a Caco-2 cell model. Results: The drugs revealed no effect on ACE2 mRNA and protein expression. ACE inhibitors and AT1R antagonist olmesartan did not influence the infection rate of SARS-CoV-2 and were unable to prevent the SARS-CoV-2-induced cell barrier disturbance. A concentration of 25 µg/mL telmisartan significantly reduced the virus replication rate. Conclusion: ACE inhibitors and AT1R antagonist showed neither beneficial nor detrimental effects on SARS-CoV-2-infection and cell barrier integrity in vitro at pharmacologically relevant concentrations.
Collapse
Affiliation(s)
- Philipp Reus
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (D.B.); (J.C.)
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Thomas Ulshöfer
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Marina Henke
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (D.B.); (J.C.)
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (D.B.); (J.C.)
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (D.B.); (J.C.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
- Pharmazentrum Frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune Mediated Diseases, CIMD, 60596 Frankfurt am Main, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Mira Grättinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (P.R.); (A.-K.S.); (T.U.); (M.H.); (S.C.); (G.G.); (V.L.); (M.G.); (P.G.)
- Fraunhofer Cluster of Excellence Immune Mediated Diseases, CIMD, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-870025060; Fax: +49-69-870010000
| |
Collapse
|
4
|
Zhan B, Xu Z, Zhang Y, Wan K, Deng H, Wang D, Bao H, Wu Q, Hu X, Wang H, Huang X, Cheng X. Nicorandil reversed homocysteine-induced coronary microvascular dysfunction via regulating PI3K/Akt/eNOS pathway. Biomed Pharmacother 2020; 127:110121. [PMID: 32407984 DOI: 10.1016/j.biopha.2020.110121] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Nicorandil exerts a protective effect against coronary microvascular dysfunction in acute myocardial infarction (AMI) patients. However, the mechanism and effect of nicorandil in hyperhomocysteinemia (HHcy) AMI patients remain unclear. METHODS C57/BL6 mice with mild to moderate HHcy and human coronary artery endothelial cells (HCAECs) cotreated with HHcy (1 mmol/L) for 24 h and hypoxia for 6 h were selected as models. Small animal ultrasound detection was used to compare cardiac function. CD31 immunofluorescence staining and tomato lectin staining were used to assess the number of microcirculation changes in vivo. MTT, tube formation and western blotting assays were used to evaluate the effect of nicorandil on HCAECs and the PI3K/Akt/eNOS pathway. RESULTS The results showed that nicorandil improved cell viability and p-PI3K/PI3K, p-Akt/Akt, and p-eNOS/eNOS expression in the vitro HHcy and hypoxia models. The beneficial effects of nicorandil on HCAECs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the nitric oxide synthase (NOS) inhibitor L-NAME. In vivo, nicorandil improved the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the post-HHcy + MI model, and the levels of CD31 and tomato lectin expression were higher in the nicorandil treatment group. The effectiveness of nicorandil was inhibited in the PI3K and L-NAME groups. CONCLUSION The results suggest that nicorandil improves Hcy-induced coronary microvascular dysfunction through the PI3K/Akt/eNOS signalling pathway.
Collapse
Affiliation(s)
- Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Zongyu Xu
- Department of Cardiology, Huangpu Branch of the Ninth People's Hospital Affiliated to the Medical College of Shanghai Jiaotong University, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, China
| | - Kefei Wan
- Clinical Medicine, Medical College of Nanchang University, China
| | - Hanyue Deng
- Clinical Medicine, Medical College of Nanchang University, China
| | - Dimeng Wang
- Clinical Medicine, Medical College of Nanchang University, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Xiaohong Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology Lewis Katz School of Medicine, Temple University, 3500 Broad Street, Philadelphia, PA, 19140, United States
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|